
MULTIMEDIA VIDEO

MULTISTANDARD VIDEO DECODER/SCALER

The KS0127B converts analog NTSC, PAL or SECAM video in composite, S-video, or component format to digitized component video. Output data can be selected for CCIR 601 or square pixel sample rates in either YCbCr or RGB formats. The digital video can be scaled down in both the horizontal and vertical directions. The KS0127B also decodes Intercast, Teletext, Closed Caption, and WSS data with a built-in bit data slicer. Digitized CVBS data can be output directly during VBI for external processing.

FEATURES

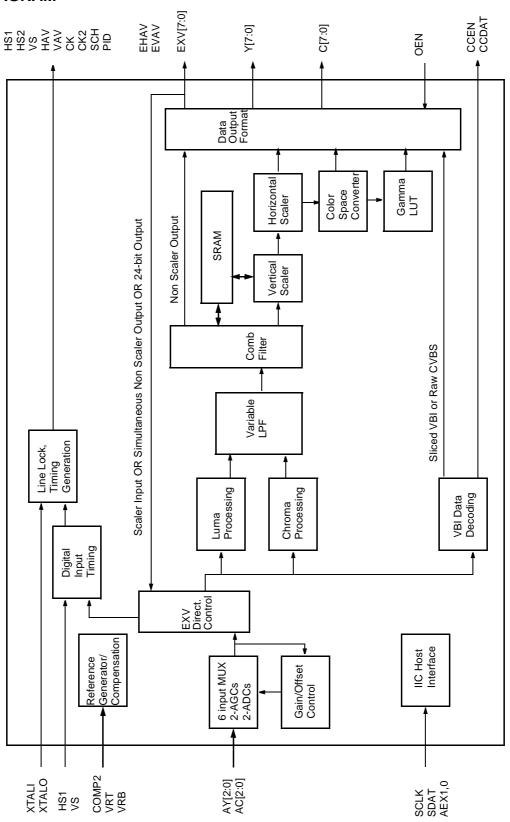
- Accepts NTSC-M/N/4.43, PAL-M/N/B/G/H/I/D/K/L and SECAM formats with auto detection
- 6 analog inputs: 3 S-video, 6 composite, or 1 3-wire YCbCr component video
- 2-line luma and chroma comb filters including adaptive luma comb for NTSC
- Programmable luma bandwidth, contrast, brightness, and edge enhancement
- Programmable chroma bandwidth, hue, and saturation
- High quality horizontal and vertical down scaler
- Intercast, Teletext and Closed Caption decoding with built-in bit slicer
- Direct output of digitized CVBS during VBI for Intercast application
- Analog square pixel or CCIR 601 sample rates
- Output in 4:4:4, 4:2:2, or 4:1:1 YCbCr component, or 24-bit or 16-bit RGB formats with dithering
- YCbCr 4:2:2 output can be 8 or 16 bits wide with embedded timing reference code support for 8-bit mode
- Simultaneous scaled and non-scaled digital output ports outputs for 8-bit mode.
- Direct access to scaler via bi-directional digital port.
- Programmable Gamma correction table
- Programmable timing signals
- Industry standard IIC interface

ORDERING INFORMATION

Device	Package	Temperature Range
KS0127B	100 PQFP	-20°~+70°C

APPLICATIONS

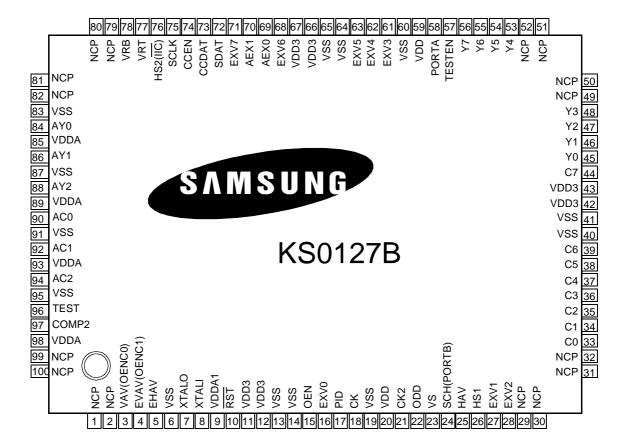
- Multimedia
- Digital Video
- Video Capture/Editing


RELATED PRODUCTS

- KS0119Q2 NTSC VIDEO ENCODER
- KS0123 MULTISTANDARD VIDEO ENCODER
- KS0125 MULTISTANDARD VIDEO ENCODER
- KS0122 MULTISTANDARD VIDEO DECODER
- KS0127 MULTISTANDARD VIDEO DECODER

BLOCK DIAGRAM

KS0127B Data Sheet



Modified on May/04/2000

MULTIMEDIA VIDEO

PIN ASSIGNMENT - 100 PQFP

MULTIMEDIA VIDEO

PIN DESCRIPTION

Pin Name	Pin #	Туре	Description
INPUT			
AY0	84	I	1 of 6 analog CVBS or 1of 3 S-video Y inputs.
AY1	86	I	1 of 6 analog CVBS or 1of 3 S-video Y inputs.
AY2	88	I	1 of 6 analog CVBS input or 1 of 3 S-video Y inputs or Y input for 3 wire component input
AC0	90	I	1 of 6 analog CVBS or 1 of 3 S-video C inputs.
AC1	92	I	1 of 6 analog CVBS or 1 of 3 S-video C inputs or Cb input for 3 wire component input
AC2	94	I	1 of 6 analog CVBS or 1 of 3 S-video C inputs or Cr input for 3 wire component input
XTALI	8	I	Pin 1 for an external crystal or TTL clock input.
XTALO	7	0	Pin 2 for an external crystal.
RST	10	I	Chip reset. Active low signal.

OUTPUT (All output pins can be selectively three-stated)

Y0 - Y7, C0 - C7	45-48,53-56,33- 39,44	0	Digital video outputs.
EXV0 - EXV7	16,27,28,61-63, 68,71	I/O	Expanded digital video I/O port. Can be configured as an additional 8-bit output port (no scaling), or additional outputs of the main digital output stream for 24 bit output modes, as an 8-bit input for direct digital access of the down scaler.
HS1	26	I/O	Programmable horizontal timing signal. One pulse every video line. When the EXV port is configured as an input, this pin can be programmed as an input.
HS2(IIC)	76	I/O	Programmable horizontal timing signal. One pulse every video line. At power up, this pin needs a 10 k Ω pull-down resistor to configure the chip to operate in IIC mode.
VS	23	I/O	Programmable vertical timing signal. When the EXV port is configured as an input, this pin can be programmed as an input.
HAV	25	0	Programmable horizontal active video flag.
VAV(OENC0)	3	I/O	Programmable vertical active video flag. During reset, the pin is an input and the logic state of this pin is latched into the OENC [0] register bit. Use a 10 k Ω resistor for pull-up or pull-down.
EHAV	5	0	Valid pixel data flag. Polarity is programmable. Active when output video data is valid.

PIN DESCRIPTION (Continued)

Pin Name	Pin #	Туре	Description
EVAV(OENC1)	4	I/O	Valid line flag. Polarity is programmable. Active when output video line is valid. During reset, the pin is an input and the logic state of this pin is latched into the OENC [1]register bit. Use a 10 k Ω resistor for pull-up or pull-down.
ODD	22	0	Odd field flag. Polarity is programmable. Active for fields 1 and 3.
PID	17	0	PAL ID flag. High for phase alternating line.
OEN	15	I	Digital video data, timing and clock output 3-state control.
СК	18	I/O	Pixel clock. In normal decoding mode, this is an output. When the EXV port is used as an input, this can be programmed as an input pixel clock.
CK2	21	0	Pixel output clock (rate is one half of CK) aligned to HAV signal.
CCDAT	73	0	Sliced VBI data output. Data can be from Closed Caption, Teletext, Intercast, or WSS type encoded data.
CCEN	74	0	When high, this pin indicates that valid VBI data is being clocked out at the CCDAT pin or at the digital video output.

MULTI-PURPOSE I/O PORTS AND TEST ENABLE

PORTA	58	I/O	Multi-purpose I/O port.
SCH(PORTB)	24	I/O	Multi-purpose I/O port.
TESTEN	57	I	When tied to VDD, the chip is put into the test mode. For normal use, this pin should be connected to VSS.
TEST	96	ļ	When tied to VDD, the chip is put into the test mode. For normal use, this pin should be connected to VSS.

REFERENCE AND COMPENSATION

VRT	77	I/O	ADC VRT compensation (requires an external 0.1 μF capacito connected to VSS).	
VRB	78	I/O	ADC VRB compensation (requires an external 0.1 μF capacitor connected to VSS).	
COMP2	97	I/O	Internal 1.3 V reference (requires an external 0.1 μF capacitor connected to VSS).	

HOST INTERFACE

SCLK	75	I	Serial clock for IIC host interface.
SDAT	72	I/O	Serial data for IIC host interface.
AEX0 - AEX1	69 - 70	Ι	Device ID selection for IIC host interface.

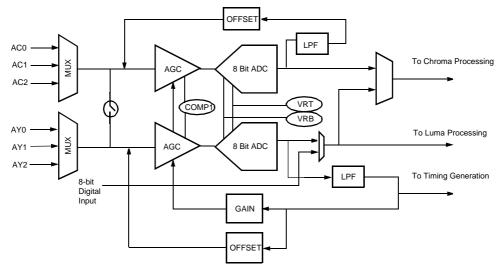
PIN DESCRIPTION (Continued)

Pin Name	Pin #	Туре	Description				
POWER AND GROUND							
VDD	20,59	PWR	Digital power supply for output buffers. The voltage can be +5V or 3.3V depending on interface requirement.				
VDD3	11,12,42,43,66, 67	+3.3V	Digital power supply for internal logic.				
VDDA	85,89,93,98	+5V	Analog power supply for ADC, AGC and reference circuits.				
VDDA1	9	+5V	Analog power supply for clock generation circuitry.				
VSS	6,13,14,19,40, 41,60,64,65,83, 87,91,95	GND	Common ground.				
NC	•						
NCP	1,2,29-32,49-52, 79-82,99,100	-	These pins are directly connected to the die substrate. If electrical connect is desired (not required) only connection to VSS is allowed.				

SAMSUNG	
ELECTRONICS	

PIN CROSS REFERENCE: NUMERICAL ORDER BY PIN NUMBER

Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name
1	NCP	26	HS1	51	NCP	76	HS2(IIC)
2	NCP	27	EXV1	52	NCP	77	VRT
3	VAV(OENC0)	28	EXV2	53	Y4	78	VRB
4	EVAV(OENC1)	29	NCP	54	Y5	79	NCP
5	EHAV	30	NCP	55	Y6	80	NCP
6	VSS	31	NCP	56	Y7	81	NCP
7	XTALO	32	NCP	57	TESTEN	82	NCP
8	XTALI	33	CO	58	PORTA	83	VSS
9	VDDA1	34	C1	59	VDD	84	AY0
10	RST	35	C2	60	VSS	85	VDDA
11	VDD3	36	C3	61	EXV3	86	AY1
12	VDD3	37	C4	62	EXV4	87	VSS
13	VSS	38	C5	63	EXV5	88	AY2
14	VSS	39	C6	64	VSS	89	VDDA
15	OEN	40	VSS	65	VSS	90	AC0
16	EXV0	41	VSS	66	VDD3	91	VSS
17	PID	42	VDD3	67	VDD3	92	AC1
18	СК	43	VDD3	68	EXV6	93	VDDA
19	VSS	44	C7	69	AEX0	94	AC2
20	VDD	45	Y0	70	AEX1	95	VSS
21	CK2	46	Y1	71	EXV7	96	TEST
22	ODD	47	Y2	72	SDAT	97	COMP2
23	VS	48	Y3	73	CCDAT	98	VDDA
24	SCH(PORTB)	49	NCP	74	CCEN	99	NCP
25	HAV	50	NCP	75	SCLK	100	NCP


1. FUNCTIONAL DESCRIPTION

1.1. VIDEO INPUT

The KS0127B supports complete video decoding of many analog video standards. In addition, the chip can support direct 8-bit YCbCr input for high quality video scaling and other processing.

1.1.1. Analog Video Input

Figure 1 shows the detailed block diagram of the analog front end. Up to six composite video sources, three S-video sources, one 3-wire YCbCr component video source, or any combination can be selected. The allowed inputs are selected using the **INSEL[3:0]** bits in the **CMDB** register. Table 1 lists all possible input selections. The front end has two paths each containing an analog gain control, a clamping control, and an 8-bit ADC. Composite video input uses only the luma path. S-video and analog component YCbCr inputs utilize both the luma and chroma paths. The ADC digital data is used to calculate the correct gain and clamp values. The data is feedback to the analog clamping and gain control. This architecture eliminates any offset and gain mismatch in the analog front end.

The analog inputs must be AC coupled through an external 0.1 μ F capacitor clamp. Due to the high sampling rate of the ADCs inside the KS0127B, most video sources will not require a low-pass filter for alias reduction. For those video sources with harmonics above 13 MHz, a simple single order pole at 6 MHz will provide sufficient high frequency signal reduction. This can be implemented with a 400 pF capacitor in parallel with the 75 Ω load.

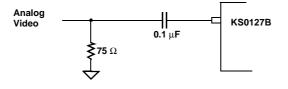


Figure 2. Typical Analog Video Input

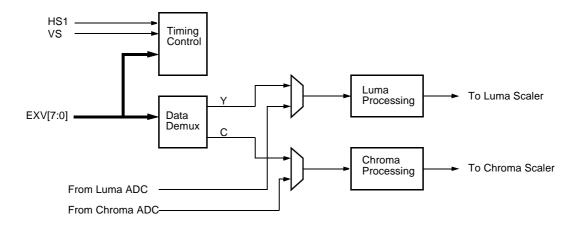
INSEL[3:0](hex)	Selected Input(s)	Video Type			
0	AY0	Composite			
1	AY1 Composite				
2	AY2	Composite			
4	AC0	Composite			
5	AC1	Composite			
6	AC2	Composite			
8	AY0, AC0	S-Video			
9	AY1, AC1	S-Video			
A	AY2, AC2	S-Video			
F	AY2(Y), AC1(Cb), AC2(Cr)	YCbCr component video			

Table 1: Analog Video Input selections

1.1.2. Digital AGC Control

The AGC normally references to the ADC code difference between sync tip and back porch. Two sets of sync tip-back porch ADC values are available for different AGC gain requirements: if **AGCGN** = 0, the sync tip locks to code 2, and the back porch locks to code 70; when **AGCGN** = 1, the sync tip locks to 16, and the back porch locks to code 70. Video signal with abnormal sync tip or very bright saturated colors may cause the ADC to limit the maximum value. This situation can be corrected by enabling the **AGCOVF** bit in the **CMDB** register to force the gain tracking loop to reduce AGC when maximum limiting conditions occur. The AGC may also be programmed to freeze the AGC at the current value by setting the **AGCFRZ** bit in the **CMDB** register. Once the AGC is frozen, the gain can be manually adjusted with the **AGC** register. The tracking time constant for the AGC can be controlled with the **AGC_LPG[1:0]** bits in the **TRACKB** register. In addition, the AGC tracking time constant can be configured as 2X faster during acquisition via the **AGC_LKG**.

1.1.3. Digital Video Input


The high quality digital video down scaler in the KS0127B can be directly accessed via the EXV bi-directional port. The KS0127B accepts CCIR 656 compliant 8-bit YCbCr digital video input with embedded or external timing. Video timing may also be generated by the KS0127B. Data path for 8-bit YCbCr input is shown in Figure 3. Selection of analog video input or digital CCIR 656 data is with the **INPSL[1:0]** register bits. The KS0127B can operate in master or slave timing mode when the chip is programmed for digital video input.

1.1.4. Pixel Clock and Timing Mode Selection for Digital Video Input

Pixel clock and synchronization timing can be individually selected to either come from an external generator or be generated internally. In addition, if synchronization is provided by an external source, the KS0127B supports embedded syncs as defined in CCIR 656, or TTL HS and VS inputs. Selection of pixel clock is via **CKDIR** bit in

CMDD register. Timing selection is through either SYNDIR or EAV bit.

By using an external pixel clock, the reference clock input at XTALI is no longer required. Additional register bits have to be programmed for different selections of pixel clock and timing, which are detailed in Table 2. The following register/bit-settings are required for digital video input:

INSEL[3:0] = 8, 9, A, or F. TSTCGN = 1. DMCTL[1:0] = 2 or 3. UGAIN = 238. BRT = 34. SAT = 229. RGBH = UNIT = PED = 1.

 Table 2: Digital Video Input Pixel Clock and Timing Selection

SYNDIR ^{*2}	EAV ^{*3}			Additional Register Programming						
	EAV °	VMEN	TSTGPH	TSTGEN	TSTGFR	PIXSEL	MNFMT	IFMT		
0	0	1	0	1	3	0 if input	1	0 if input		
0	1	0	1	1	3	data is at square	1	is 50 Hz video. 1 if input is 60 Hz		
1	0	0	1	1	1	pixel rate	1			
0	0	1	0	1	3	1 if input	1	video.		
0	1	0	1	1	1	is at CCIR	1			
1	0	0	1	1	1	601 rate.	1			
	1 0 0 1	0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0	0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0	0 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1	0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1	0 1 0 1 1 3 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 3 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1	0 1 0 1 1 3 data is at square pixel rate. 1 0 0 1 1 1 3 pixel rate. 0 0 1 0 1 3 1 if input is at CLR 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1	0 1 0 1 1 3 data is at square pixel 1 1 0 0 1 1 1 3 gquare pixel 1 0 0 1 0 1 1 1 1 0 0 1 0 1 3 1 if input 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 <td< td=""></td<>		

*¹: CKDIR = 0 - CK is output and is internally generated. CKDIR = 1 - CK is input from an external source.
 *²: SYNDIR = 0 - HS1 and VS are output. SYNDIR = 1 - HS1 and VS are inputs from external sources.
 *³: EAV = 0 - chip will not sync to embedded timing. EAV = 1 - chip will sync to embedded timing.

Note: the combination X11 for CKDIR, SYNDIR, EAV is not valid.

MULTIMEDIA VIDEO

When in digital input mode, all programmable timing registers (such as HAVB, HAVE, HS2B etc.) are still functional. If HS1 and VS are programmed as inputs, the associated output timing controls such as HS1B,E will have no effect. An example of horizontal timing for digital input is shown in Figure 4.

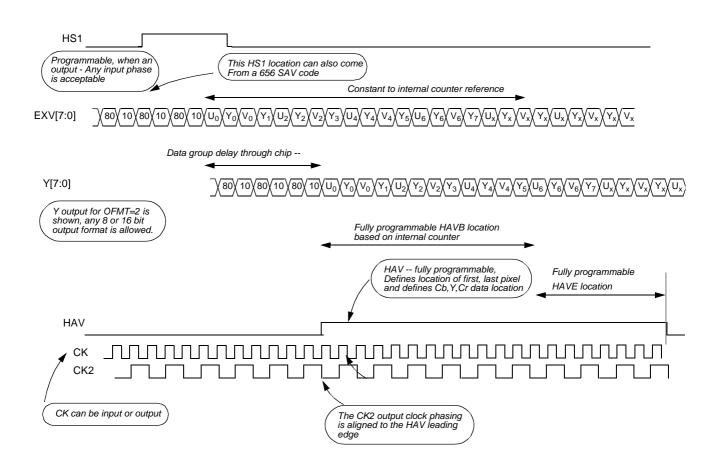


Figure 4. Horizontal Timing for EXV Port as Digital Input

1.1.5. Additional Information for Analog Component Video Input

For the KS0127B to correctly set the V component phase in analog component video input mode, PID (pin 17) and PORTA (pin 58) need to be connected together. PORTA has to be configured as input (**DIRA** = 0) and connected to the internal CBG signal (**DATAA**[2:0] = 3).

It is also recommended that external clamp circuit be used for Cb and Cr inputs (before the coupling caps) and the internal chroma clamp be disabled (**COFFENB** = 1) due to slight Cb/Cr leakage.

1.2. VIDEO TRACKING AND TIMING GENERATION

When the KS0127B is configured for analog video input, the chip tracks the video input and generates a sampling clock that is line locked to the input video. The KS0127B requires an external reference clock for video tracking. This reference can be supplied via a crystal using the on chip crystal interface or any TTL compatible source. These configurations are shown in Figure 5

1.2.1. Clock Input Timing Reference

The KS0127B can use either a 24.576 MHz or a 26.8 MHz reference. However, it is recommended that the 24.576 MHz reference be used for CCIR 601 operation, and the 26.8 MHz reference be used for square pixel or dual mode operation. Other specifications for the crystal are:

- Fundamental or third overtone
- Load capacitance of ~20 pF
- Series resistance of 40 Ω or less
- Frequency deviation of 50 ppm or less over operating temperature range

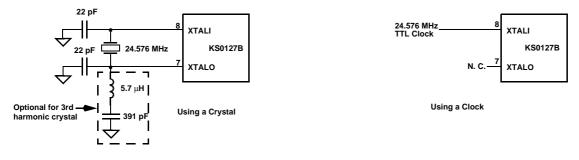


Figure 5. Standard Clock Configurations

1.2.2. The Sampling Clock

The sampling clock is generated by multiplying the line rate by N. This ensures that samples are aligned horizontally, vertically and in time. The required N factor for the KS0127B is based upon the field rate (60 Hz or 50 Hz) and the desired sampling rates (CCIR 601 or square pixel). Field rate can be automatically detected and can be monitored with the **FFRDET** bit in the **STAT** register. Manual control of the field rate can be controlled with the **MNFMT** and **IFMT** bits. The **PIXSEL** bit in register **CMDA** selects CCIR 601 or square pixel. Table 3 shows the constants for the various combinations of input formats and output pixel rates.

	CCIR 601 Data Rates		Square Pixe		
	М	N,B,G,H,I,D,K,K1,L	М	N,B,G,H,I,D,K,K1,L	Units
Field Rate	60	50	60	50	Hz
Pixels/Line (N)	858	864	780	944	Pixels
Active Pixels/Line	720	720	640	768	Pixels
Active Lines/Frame	480	580	480	580	Lines
Pixel Rate	13.5	13.5	12.27	14.75	MHz
ADC Sampling Rate	27	27	24.54	29.5	MHz

Table 3: Timing for Different Pixel Rates

The time constants for the pixel clock tracking loop can be adjusted with the HFSEL[1:0] bits.

In addition to providing the pixel clock, the KS0127B also outputs various timing signals to indicate the beginning of a line, a field, and for field and frame identification. All the timing and clock pins may be optionally put into high impedance state. Three-state of these pins are software controlled and initial state of these pins at power up is controlled via two configuration pins: 3 and 4.

The KS0127B can generate all the video timing without video input. This enables the KS0127B to be used as a video timing generator for a system that contains both the KS0127B for live video input and a MPEG decoder which requires a video timing generator.

1.2.3. Horizontal Timing

The KS0127B creates many internal timing signals aligned to the horizontal sync tip (mid-way of the falling edge of horizontal sync, typically ADC code 36). These include locations of color burst (CBG, CBGW) used in chrominance processing, back porch (BPG), and sync tip timing signals (SLICE, FS_PULSE) used for AGC and clamp functions. SLICE is low whenever the input is below half way level of horizontal sync (typically ADC code 36). FS_PULSE is a single clock pulse coincide with the start of SLICE. One of these internal signals can be made available at the PORTA or PORTB pin at any time.

The chip outputs two horizontal synchronization signals: HS1 and HS2. The start and stop locations for these signals are fully programmable. Offset programmed to **HSxB**, **HSxE**, and **HSxBE0** are added to the default edge locations as shown in Table 4. Note that there are different modulo numbers for different input video standards and output pixel rates.

		60	60 Hz 50 Hz		Hz
Description	Signal	CCIR 601 (modulo 1716)	Square Pixel (modulo 1560)	CCIR 601 (modulo 1728)	Square Pixel (modulo 1888)
Chip delay		120	120	120	120
Sync gate (1-CK pulse)	SYG	72	72	72	72
Back porch gate	BPG	[147 222]	[129 204]	[154 234]	[168 254]
Color burst gate (1-CK pulse)	CBG	222	204	234	254
Wide color burst gate	CBGW	[159 254]	[147 233]	[173 254]	[186 277]
Two pulses per line (1-CK each pulse)	FH2	42, 900	42, 822	42, 906	42, 986
Default one pulse per line	HS1	[65 238]	[45 220]	[69 250]	[65 270]
Default one pulse per line	HS2	[65 238]	[45 220]	[69 250]	[65 270]
Default horizontal cropping	HAV	[351 75]	[334 58]	[379 91]	[415 59]

Table 4: Horizontal Timing Signal Edge Locations (in # of C	K)
---	----

An additional signal, HAV, is provided for horizontal video cropping. This signal has programmable polarity, start and stop locations. Two 11-bit registers, **HAVB** and **HAVE**, are used to define the first and last pixel locations of the horizontal portion of the cropped video. Numbers programmed into these registers are used as offset to the default locations as shown in Table 4. Note that even though **HAVB** and **HAVE** have 1-CK resolution, the difference between them should be maintained at multiple of 4 CKs for correct output.

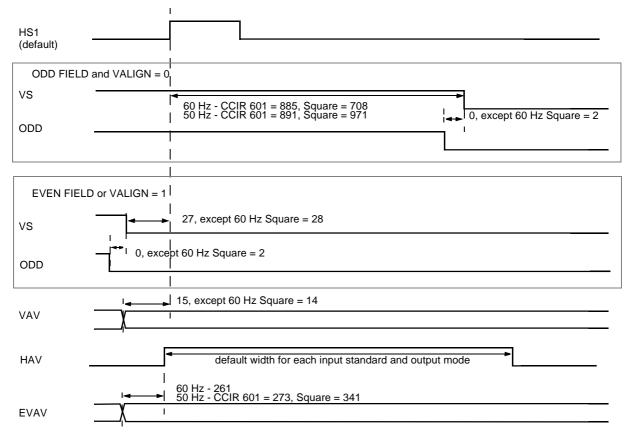
Table 4 shows the default edge locations relative to the midway of the falling edge of the analog horizontal sync. Note the numbers shown are in multiple of CK clocks. Figure 6 shows the approximate locations for the horizontal timing signals. Horizontal timing signals used for scaling will be described in Section 1.6.1.

Analog video input		
Digital video output	Active video	\rightarrow
	AVE HAVE	
HAV		
HS1,2		
FS_PULSE		fL
SLICE		<u> </u>
SYG	Ω	<u>_</u>
BPG		
CBG	і Л	
CBGW		
FH2		[

Figure 6. Approximate Locations for the Horizontal Timing Signals

1.2.4. Vertical Timing

The vertical timing signals include VS, VAV, ODD, SCH, and PID.


The VS is used for identifying the first line of video in the vertical position. The VS leading edge can be programmed to either track the incoming video's serration pulses or to be aligned to the beginning of the video line or half way, as shown in Figure 36 and Figure 37. If **VALIGN** = 0, the VS leading edge is based on the output of an internal low pass filter, and its location is dependent on the noise conditions of the video input. The trailing edge of VS is locked to either the beginning of the video line or half way. The half way location relative to the beginning of the video line changes depending on current input standard and output format. If **VALIGN** = 1, the leading edge of the VS is aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line or half way. The trailing edge is always aligned to the beginning of the video line. The **VSE** bit in the **CMDA** register can be programmed to shorten the VS falling edge by one horizontal line.

The VAV signal is used for vertical cropping. The start and stop lines for VAV are programmable through the **VAVB** and **VAVE** registers, respectively.

The ODD signal signifies the current field number. When ODD is active, the current field is 1 or 3 (or 5 or 7 if in PAL mode). The leading and trailing edges of ODD can be aligned to either the leading edge of VS (**VALIGN** = 1) or the trailing edge of VS (**VALIGN** = 0). The signal may be used in conjunction with SCH and PID to exactly identify the

current field. To distinguish between fields 1, 2 verse fields 3, 4 (or fields 1, 2, 3, 4 verse fields 5, 6, 7, 8 for PAL) the phase of the color burst relative to the sync tip must be measured. That information is provided by the SCH pin. The KS0127B provides the output of a comparator that measures whether the current color burst phase relative to the falling edge of the sync is greater or less than a predetermined constant. This constant is controlled with **SCHCMP[3:0]**. The polarity of the SCH output pin depends on the current **SCHCMP[3:0]** value. The SCH signal changes every video line. The SCH for line 260 is held for the entire vertical blanking period. By using the SCH signal for the same line from each field, proper field identification can be determined. Figure 8 shows field identification values for **SCHCMP[3:0]**=0. It is important to note that the SCH value is only valid for video signals that have a constant sync tip to color burst relationship. This is not the case with consumer VCRs.

Note: Numbers shown are in CK. Active high polarities are used. Timing shown for VAV and EVAV are with qualifier off.

Figure 7. Short Term Vertical Timing

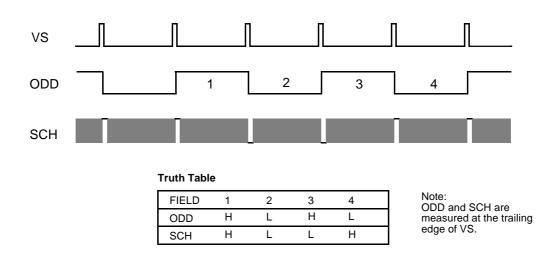


Figure 8. NTSC Vertical Timing Signals

The PID pin is used to identify whether the current V-axis is inverted in PAL mode. This signal changes at the color burst. By noting this value at the same line of each field, a determination of whether a field is from {1-4} or {5-8} can be made. As with the SCH pin, the KS0127B is designed to hold the line 260 PID measurement for the entire vertical blank period. This allows easy sampling of the PID or current field identification.

The ODD, SCH and PID signals change at different times and more than once within the video fields. Proper data for field identification is determined by latching all three signals at the trailing edge of VS. Figure 9 shows the VS, ODD, SCH, and PID signals and their latched values for each of the 8 possible fields. Figure 10 is the line to line timing diagram for these signals in PAL mode.

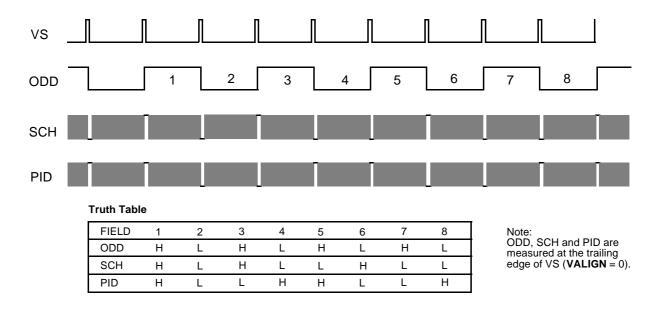


Figure 9. PAL Vertical Timing Signals

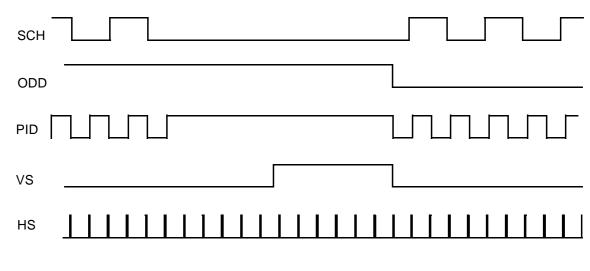
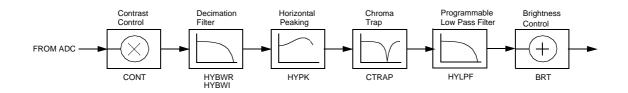
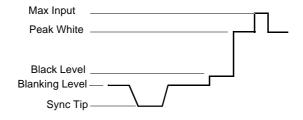
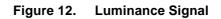


Figure 10. Line to Line VS, SCH and PID Timing (PAL input)

1.3. HORIZONTAL LUMA PROCESSING

A simplified block diagram for the luma path is shown in Figure 11.


Figure 11. Horizontal Luma Processing Unit

1.3.1. Luminance DC Gain

The KS0127B can accommodate CCIR 624 M/N/H/G standards, which fall into categories of -40 or -43 sync tip and inclusion or exclusion of 7.5 setup. The KS0127B can produce correct CCIR 601 luminance output levels by controlling the gain and offset in the luminance path via **PED**. This register should be set for the appropriate input standard. The programmable **CONT** and **BRT** registers provide the user with additional flexibility to create non-standard luminance gain and offset values.

Luminance levels produced by the KS0127B for different broadcast standards (assuming **AGCGN**=0, **CONT**=0 and **BRT**=0) are summarized in Table 5.

	M/N PED=1			r	M/N PED=	0	B/G/H PED=1		
Signal	Level (IRE)	ADC (CVBS)	Y[7:0]	Level (IRE)	ADC (CVBS)	Y[7:0]	Level (IRE)	ADC (CVBS)	Y[7:0]
Max Input	109	255	255	109	255	255	117	255	255
Peak White	100	240	235	100	240	235	100	229	235
Black	7.5	83	16	0	70	16	0	70	16
Blank	0	70	1	0	70	16	0	70	
Sync	-40	2	1	-40	2	1	-43	2	
KS0127B Data Path Equation	$C_Y =$	= 1.37 <i>CVBS</i>	-100	C _Y	= 1.288 <i>CV</i>	<i>BS</i> -74	C _Y	= 1.37 <i>CVB</i>	S-80

Table 5: Luminance Digital Level Code

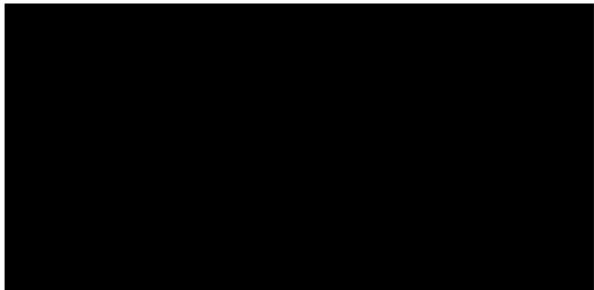
When digital component output is desired in RGB mode, the **RGBH** register can be programmed to increase the 0-100% values from standard CCIR 601 levels to full range levels. The gain variations are shown in Table 6.

Table 6: RGB Output Range

	RGB normal	gain (RGBH=0)	RGB high gai	n (RGBH=1)
Signal	Су	RGB (U,V=0)	Су	RGB (U,V=0)
Peak White	235	235	255	255
Black	16	16	0	0

For CCIR 601 digital video input (INPSL[1:0] = 1), register UNIT must be set to 1 to produce unit gain.

1.3.2. Horizontal Luma Frequency Shaping


The luma path contains many programmable filters for different purposes. The combination of these filters will give different frequency characteristics.

The over sampled video data from the ADC pass through a decimation filter. The decimation filter has user programmable bandwidth. Three registers are used to control the decimation filter characteristics and each is designed for certain purposes. The **HYBWI**, when set to "1", provides extra bandwidth for very high quality video source. The **HYBWR**, when set to "1", reduces the bandwidth so high frequency noise can be eliminated. The 3-bit register **HYLPF[2:0]** provides the necessary bandwidth reduction for horizontal scaling. When all three registers are programmed to '0", the decimation filter has the bandwidth of the normal video. The KS0127B provides the option of bypassing the decimation filter. This option should be used only when the input video is band limited and with low high frequency noise.

For composite video input, the notch filter can be enabled (**CTRAP** set to "1") to extract the luminance. The notch filter has different center frequencies for different input video format. User selectable peaking function is included for edge enhancement. The notch filter should be bypassed for S-video and component video input, or if luma comb filter is enabled.

The luminance filter characteristics have been designed to be very similar for all combinations of 60/50 Hz video and CCIR 601/square pixel sampling rates. Figure 13 and Figure 14 show the output characteristics of the luminance path with different filter combinations for the supported input standards and output pixel rates.

Frequency in Mhz

Figure 13. Medium to High Frequency Luma Filter Characteristics (CTRAP=0)

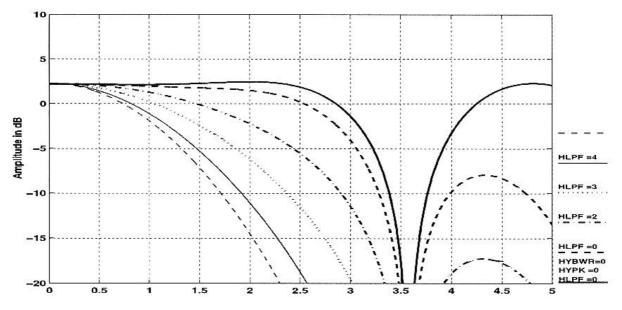


Figure 14. Medium to Low Frequency Luma Filter Characteristics (NTSC, CTRAP=1)

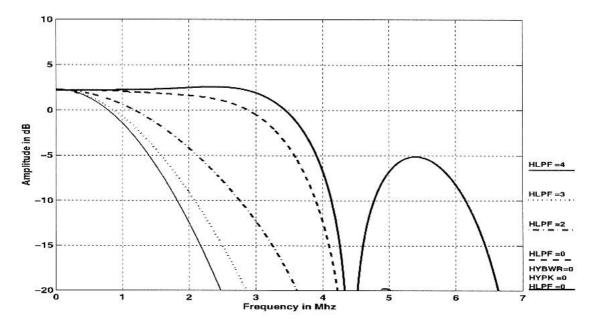


Figure 15. Medium to Low Frequency Luma Filter Characteristic (PAL, CTRAP=1)

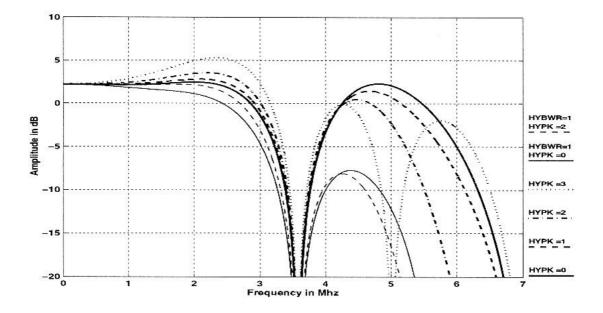


Figure 16. Luma Filter Characteristic with Peaking On (NTSC, CTRAP=1)

Modified on May/04/2000

1.4. HORIZONTAL CHROMA PROCESSING

A simplified block diagram for the horizontal chroma processing unit is shown in Figure 17.

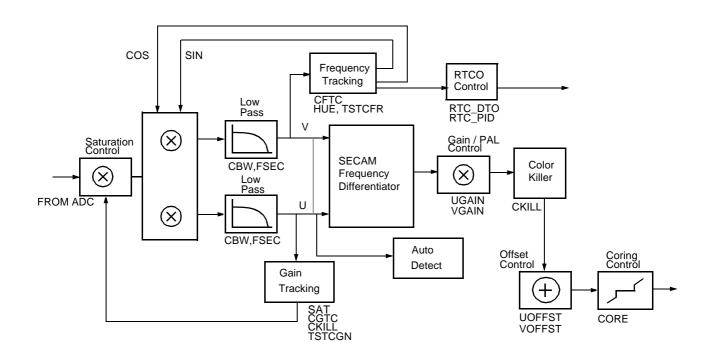


Figure 17. Horizontal Chroma Processing Unit

The KS0127B supports chroma input in NTSC, PAL, SECAM and component formats. The color standard is automatically detected and the various chroma processing blocks are enabled as required for the given chroma standard. Details of the various chroma processing blocks follow.

1.4.1. IF Compensation

For improved chroma demodulation when the input video is from a mis-tuned IF source, an IF compensation filter is included that has variable gain for the upper chroma side band. This is controlled by the **CIFCMP**[1:0] bits at location **CDEM**. The frequency response is shown in Figure 18. For convenience, all plots are normalized to the NTSC modulation frequency.

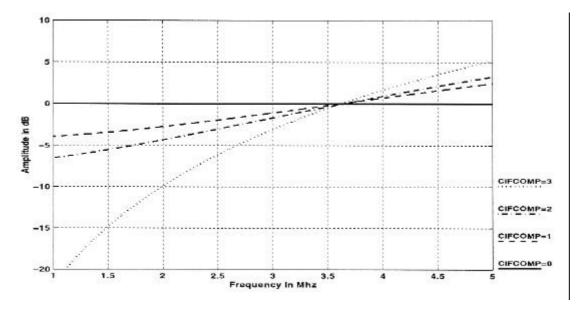


Figure 18. Chroma IF Compensation Frequency Response

1.4.2. Demodulation Gain

The demodulation gain block is controlled by feedback from the gain tracking block. For NTSC and PAL type inputs, the gain constant is derived from a programmable reference compared against the U component of the input video. This reference is controlled by the **SAT** register. The default value '0" is the correct gain (saturation for nominal output). For SECAM type input, the feedback is calculated such that proper frequency demodulation is obtained. When external calibration is desired, the gain feed back loop can be 'opened" by setting **TSTCGN=1**. The **SAT** then controls bits 8 through 1 of a 10 bit multiplier.

For standard auto tracking applications, it is recommended that the **SAT** register be used as an end user saturation control. This register is 2s compliment.

1.4.3. Demodulation Low Pass Filter

The demodulation circuit also contains a programmable low pass filter and a coring function for noise reduction. The chroma low pass filter frequency response for the demodulation circuit for the various video standards are shown in Figure 19

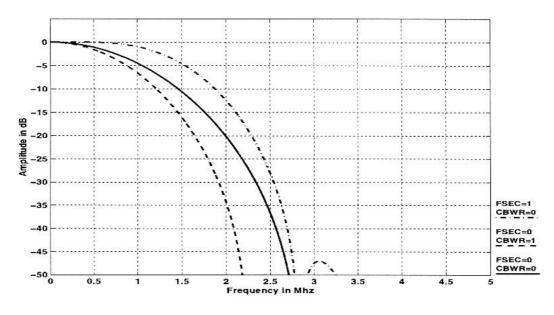


Figure 19. Chroma Low Pass Filter Frequency Response

1.4.4. SECAM Demodulation

SECAM processing includes a frequency differentiator, a Cloche and a de-emphasis filter. Frequency response for the filters are shown in Figure 20 and Figure 21.

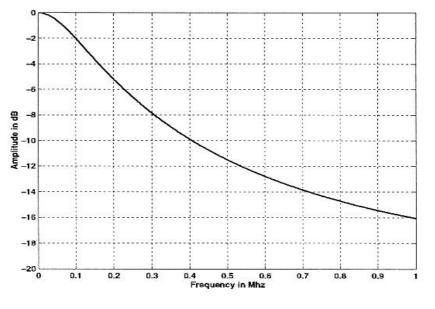


Figure 20. Cloche Filter Frequency Characteristic

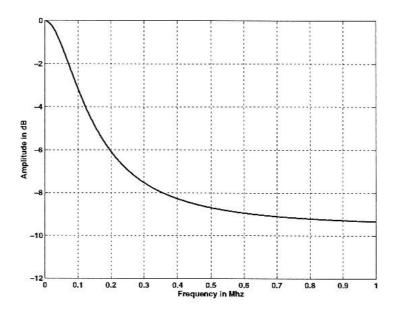


Figure 21. De-emphasis Filter Frequency Response

1.4.5. Additional Chroma Functions

KS0127B has many built in auto detection circuits. These allow KS0127B to track any type of video standard input automatically.

For analog component video input, the demodulation function is not enabled. The low pass filter provides a group delay for Cb and Cr alignment. This enables the two components to be sampled by one ADC.

An RTCO serial output is provided that encodes the current chroma and pixel frequency of the decoder. This information can be used by an Encoder running off of the decoder clock to produce proper color output. The horizontal position of the serial signal is controlled by the **HS2** location. The phasing of the DTO and the Encoder can be reset using the **RTC_DTO** bit. For PAL mode, the PID polarity can be controlled with the **RTC_PID** bit.

1.5. COMB FILTER

Comb filters provide superior Y/C separation for composite NTSC and PAL than simple chroma trap filter. The KS0127B contains on-chip separate 2-line stored luma and chroma comb filters. An internal signal COMB controls for what lines the comb function is enabled. This signal is available through the PORTB pin. Combing is part of the vertical processing which also includes vertical scaling, which is discussed in Section 1.6. A block diagram for the vertical processing section is shown in Figure 22.

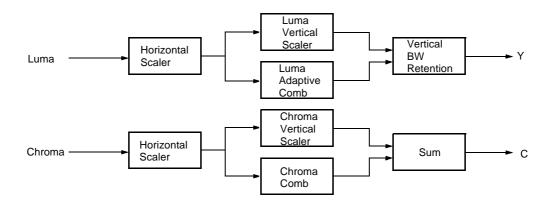


Figure 22. Vertical Processing

1.5.1. Luma Comb Filter

The luma comb filter reduces high frequency chroma leakage into the luminance path. The KS0127B uses 2-line stored luma data for combing. Filter coefficients for different video input standards are provided and can be selected automatically based on the video input. Filter coefficients may also be set manually.

An optional active comb is employed for NTSC video. Selection of luma comb coefficients is based on line-to-line chroma correlation.

Provision is made to disable luma comb for S-video, component, or digital video input. This is achieved by programming the luma comb control register **MNYCMB** to "1", and by choosing the value 3 or 4 for **YCMBCO[2:0]**. This will result either a 1-line or 2-line luma delay. Care must be exercised when disabling the luma comb so that luma line delay matches the chroma path line delay.

Special filtering is applied to ensure that high vertical bandwidth is retained for the luma path.

1.5.2. Chroma Comb Filter

The chroma comb filter provides further color separation from the composite video. Filter coefficients can be automatically selected based on the input video standard or manually set using **NMCCMB** and **CCMBCO[2:0]**.

1.6. SCALING

The KS0127B includes a high quality down scaler. The video images can be down scaled in both horizontal and vertical direction to an arbitrary size.

1.6.1. Horizontal Scaler

The horizontal scaler uses a 5-tap 32-phase interpolation filter for luma, and a 3-tap 8-phase interpolation filter for chroma. Scaled pixel data are stored in an on-chip FIFO so they can be sent out in a continuous stream.

Horizontal scaling ratio is programmed via the 15-bit register **HSCL**. The timing signal EHAV is used to indicate when scaled pixel data is available at the video output port. EHAV can be programmed so that it is active for every line regardless of vertical cropping and scaling. Or it can be programmed to be active only for valid video lines. For example, Figure 23 shows the timing for CIF output assuming HAV is programmed to be active for 720 pixels. The **HSCL** register is programmed with the value 4000 (hex). The trailing edge of EHAV is either aligned with the trailing edge of HAV if the total number of scaled pixels is even, or is one pixel clock earlier if the number is odd.

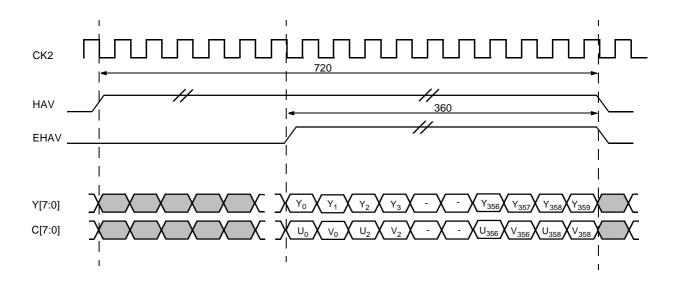


Figure 23. Horizontal Scaler Timing for CIF Output (CCIR 601 Pixel Rate)

Frequency response and group delay for the luma scaler are shown in Figure 24 and Figure 25, respectively. The luma interpolation filter is designed to achieve relatively flat frequency response and minimal group delay up to the normal video bandwidth. A flat full data path frequency response may be obtained with the help of the luma peaking control register **HYPK[1:0]**. The high quality filter ensures minimal artifacts for any scaling ratio.

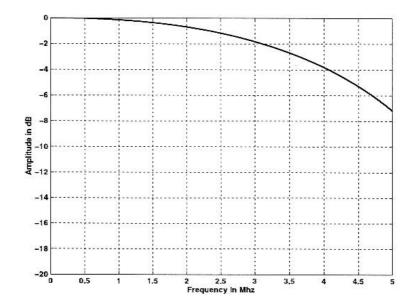


Figure 24. Horizontal Luma Scaler Interpolation Filter Frequency Response

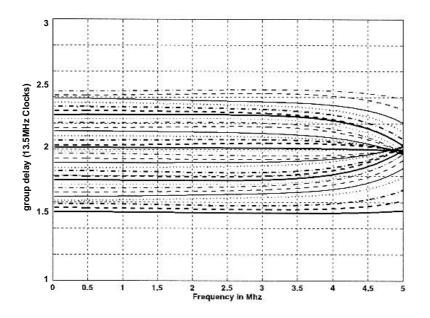


Figure 25. Horizontal Luma Scaler Interpolation Filter Group Delay

Because of the limited bandwidth of the chroma data, a simpler interpolation filter is used for the horizontal chroma scaler. The frequency response and group delay for this filter are shown in Figure 26 and Figure 27, respectively.

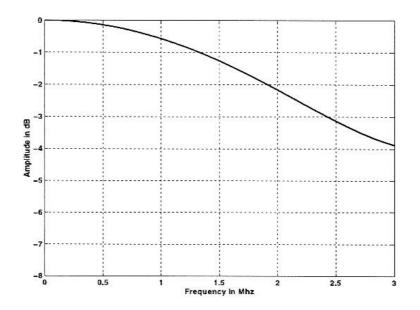


Figure 26. Horizontal Chroma Scaler Interpolation Filter Frequency Response

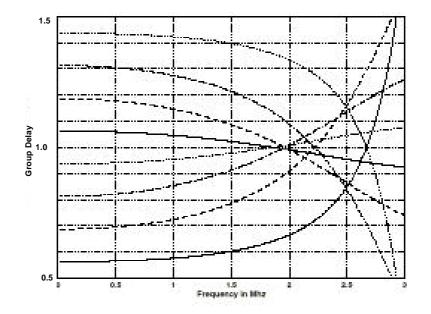


Figure 27. Horizontal Chroma Scaler Interpolation Filter Group Delay

1.6.2. Luma Vertical Scaler

Vertical luma scaling uses either a 3-tap or 5-tap 8-phase interpolation filter depending on the horizontal scaling

ratio.

Vertical scaling ratio is programmed via the 14-bit register **VSCL**. A valid scaled line is indicated by the timing signal EVAV being active. The EVAV can be programmed to be internally gated by the VAV signal so it can only be valid within the vertically cropped region.

Luma horizontal scaling can use either a 3-tap or a 5-tap interpolation filter depending on the horizontal scaling ration. If the scaled horizontal line has less than or equal to 384 pixels, the 5-tap luma interpolation filter can be turned on by programming the VRT2X bit to a "1". Otherwise, the VRT2X bit should be set to "0" and the 3-tap filter be used.

The **VYBW** bit provides additional vertical bandwidth control for vertical scaling. Typically, when the vertical scaling ratio is less than 1/2, this bit should be set to "1" to eliminate any aliasing effect.

Luma vertical scaler interpolation filter frequency response is shown in Figure 28.

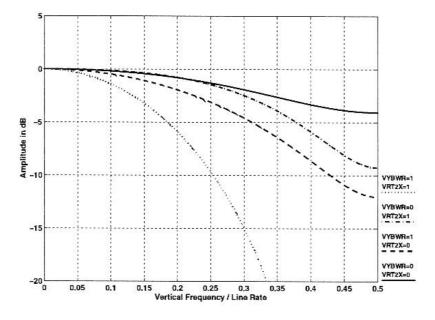


Figure 28. Luma Vertical Scaler Interpolation Filter Frequency Response

In vertical scaling, the start of signal VAV controls the phase of the vertical scaler interpolation filter. If **VAVB**, **VAVE**, **VAVOD0**, **VAVEV0**, and **VSCL** are programmed such that the vertical interpolation filter has the same phase and scaling ratio as that of a memory controller (most memory controller has simple line dropping vertical scaling), it is possible to interface the KS0127B to the memory controller without using EVAV.

1.6.3. Chroma Vertical Scaling

Chroma vertical scaling uses different algorithms depending on video input standard and horizontal scaling ratio. If horizontal scaling results in line with less than or equal to 384 pixels, and the **VRT2X** is set to a "1", a 5-tap interpolation filter will be used for all video inputs. Otherwise, for NTSC, a 3-tap interpolation filter will be used for NTSC input, and decimation (line dropping without filtering) will be used for PAL and SECAM. Filter characteristics for the 3-tap and 5-tap filters are shown in Figure 29.

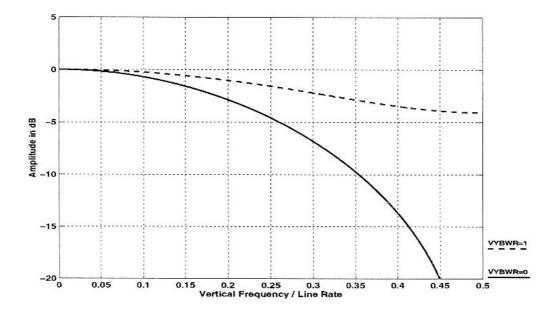


Figure 29. Chroma Vertical Scaler Interpolation Filter Frequency Response

1.7. VBI DATA PROCESSING

The KS0127B VBI data processing is very flexible in that it supports VBI data formats of:

- Closed Caption Line 21 Data Service (EIA-608)
- 525 line / 60Hz Teletext systems B,C,D (ITU-R BT.653-2)
- 625 line / 50Hz Teletext systems A,B,C,D (ITU-R BT.653-2)
- Copy Generation Management System (EIA/IS-702)
- Wide Screen Signalling (WSS ETS 300 294).

Note that the SMPTE data slicing is removed for the KS0127B and replaced with the WSS / CGMS processing. This data can be accessed from the part via four different methods:

- Enabling the 'Raw un-processed 27MHz" Y ADC samples to be output for the appropriate lines in place of the normal YUV data.
- Slicing the data (creating a clock and comparing the data to a threshold at the clock) and bursting this data out on Y output.
- Reading the sliced data from two internal registers via the IIC bus.
- Via 2 external pins that output the sliced VBI data and the time at which the slice is valid.

A simplified block diagram for the VBI section is shown in Figure 30.

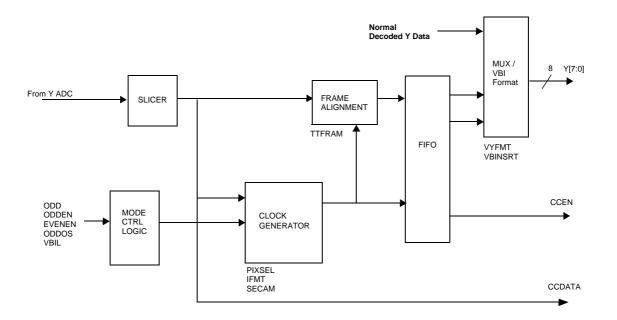


Figure 30. VBI Decoder Block Diagram

Modified on May/04/2000

Table 7 lists all the video standards that the VBI data slicer supports. Some of these modes are auto detected based on the current video input standard,

		of Chip on Bits	Required Values of Registers to enable Standard		Characteristics of the Standard	
Mode	Format	SECAM	VBIL0-15	TT_SYS	Data Rate (MHz)	Number of Bits (bytes)
60Hz Teletext system C (NTSC / Intercast)	1	0	2	0	5.727272	272 (34)
50Hz Teletext system B (PAL)	0	0	2	0	6.9375	344 (43)
50Hz Teletext system A (SECAM)	0	1	2	0	6.203125	304 (38)
60Hz Teletext system B	0	1	2	1	5.727272	280 (35)
50Hz Teletext system C	0	1	2	2	5.734375	272 (34)
50Hz Teletext system D	0	1	2	3	5.6457875	280 (35)
60Hz Teletext system D	0	1	2	3	5.727272	280 (35)
Closed Caption NTSC 601	N/A	N/A	1	N/A	0.5035	16 (2)
CGMS (NTSC 60Hz)	1	N/A	3	N/A	0.447443	20 (3)
WSS (PAL 50Hz)	0	N/A	3	N/A	5.0000	84

Table 7: Video Standards Supported by VBI Decoder

Configuring the VBI processing consists of many different steps which are individually explained below.

1.7.1. Enabling the VBI Processor

The VBI processor can be enabled independently for the ODD or EVEN fields with the **ODDEN** and **EVENEN** bits. Some VBI data is only present on line in 1 of the 2 fields, These independent field enables allow control of the total VBI data output from the chip. These controls apply to all VBI Lines, Thus it is not possible to enable Closed caption line 21 for the Even field and line 19 Teletext for both the odd and even field.

1.7.2. Selecting the Type of Output Data

As previously mentioned, there are 4 different ways the VBI data can be extracted. Three of these are selected as shown in the table, the fourth method (CCEN and CCDAT pins) is always available if VBI processing is enabled.

VBCVBS	VBINSRT	Output Mode
0	0	The VBI data is available via the internal registers CCDAT1 and CCDAT2 . Only the last 2 extracted bytes are stored in these registers. Thus, this mode is only useful for extraction of Closed Caption data.
0	1	This mode enables output of the sliced VBI data.
1	0	This mode enables output of direct data from the ADC.
1	1	This mode is invalid.

 Table 8:
 VBI Data Output Mode (VBILn != 0)

The KS0127B adds an additional output mode and flexibility to vary the modes from line to line. If **VBCVBS**=0 and **VBINSRT**=1 KS0127B will output sliced data on enabled lines. By setting **VBIMID** to 1, any line for which **VBIL**=3 will output raw ADC data instead of WSS or CGMS. This mode allows a mixture of sliced and raw data. This can be used to output raw data from a teletext line and sliced data from a closed caption line.

1.7.3. Select Individual Lines Enabled for VBI Processing

The KS0127B allows programmable selection of processing for the various video lines. For example Teletext/Intercast data can be sliced for lines 14 - 17, and closed caption for line 21.

Each 2-bit register **VBIL0** through **VBIL15** defines how a specific VBI line is processed. As can be seen in Figure 36 for 60 Hz and Figure 37 for 50 Hz video, the following alignments exist:

VBIL	BIL Line Number That the VBIL Processing comman to (Assuming ODDOS=1)					
number	Odd Field 60 Hz	Even Field 60 Hz	Odd Field 50 Hz	Even Field 50Hz		
VBILO	All Lines Except 10-24	All Lines Except 273-287	All lines Except 7-21	All lines Except 320 - 334		
VBIL1	9&10	272&273	6&7	319&320		
VBIL2	11	274	8	321		
VBIL3	12	275	9	322		
VBIL4	13	276	10	323		
VBIL5	14	277	11	324		
VBIL6	15	278	12	325		
VBIL7	16	279	13	326		
VBIL8	17	280	14	327		
VBIL9	18	281	15	328		
VBIL10	19	282	16	329		
VBIL11	20	283	17	330		
VBIL12	21	284	18	331		
VBIL13	22	285	19	332		
VBIL14	23	286	20	333		
VBIL15	24&25	287&288	21&22	334&335		

Table 9: VBI Line(s) Selection

The **ODDOS[1:0**] bits allow offset between the odd and even fields. Thus VBIL9 can be lines 17,18 or 19 for ODD fields while VBIL9 is still line 281 for EVEN fields. This extra controls account for variations of VBI data locations from ODD and EVEN fields.

When Intercast or Teletext data is selected, an 8-bit user programmable register (**TTFRAM**) is provided for the framing byte. The frame alignment processor uses this information to properly locate the first data bit on each line

1.7.4. Raw CVBS Data Output Format

When raw ADC data is selected as output in place of the normal YUV or RGB data. The following rules apply:

- For 656 type 8 bit outputs, The ADC data outputs with successive data points in place of the Cb, Y, Cr, Y data stream.
- For 16 bit or 24 bit outputs, The ADC data is output on the Y[7:0] and C[7:0] output pins. At any CK2 clock 2 bytes of ADC data are output. The Y[7:0] bus represents data N while C[7:0] is data N+1.
- ADC data is only output during the region that HAV is active.
- All ADC outputs are limited to the range 1-254, thus a 0 or 255 value will not be output.

For the line selected mode described above using **VBCVBS** and **VBIL**, data is from the luma ADC only. If C ADC data or the entire video line is required, configure **OFMT** bits.

1.7.5. Sliced Data Output Formats

While sliced data is available for many of the output formats, the target application is 656 output format. The description of data format is limited to this mode. The KS0127B allows this data to be output during active video.

Figure 31 shows the timing diagram for VYFMT[1:0]=3.

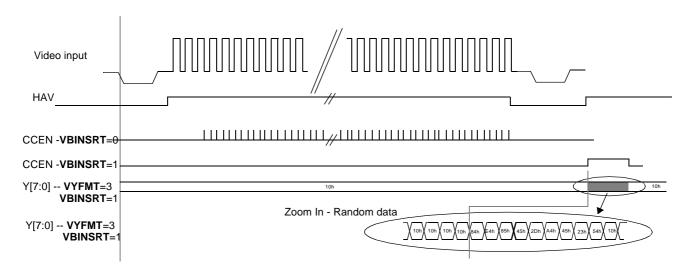


Figure 31. VBI Insertion Timing for VYFMT[1:0]=3

Digitized CVBS data can also be output on the video output port (except for output format 1, 5 and 7). CVBS is always digitized at the CK clock rate. CVBS data is available when HAV is active. Raw CVBS data is output in a

MULTIMEDIA VIDEO

similar fashion as decoded video. For 8-bit output format, data is output at CK rate using the same 8-bit port as the decoded video. For 16-bit and 24-bit output format, data is output at CK2 rate using Y and C ports. The sequence of data output is CVBS_{2n} on Y, and CVBS_{2n+1} on C (note that EXV port is not used in 24-bit format for outputting raw CVBS data).

For Closed Caption data, two read-only registers, **CCDAT1** and **CCDAT2**, are provided so the Closed Caption data can be read via the host interface. The **VBIFLG** bit can be polled to see if data captured in the two registers can be safely read.

1.8. COLOR SPACE CONVERTER

The color space converter processes the video data as YCbCr 4:4:4 when converting to RGB. A programmable limiter **(YCRANG)** can be imposed on the Y/C data to limit the ranges. One can choose to limit the Y/C to 1 - 254, or Y to 16 - 235 and C to 16 - 240.

When selected, YCbCr 4:4:4 is converted to 24 bit RGB according to the following equations:

$$R = C_{Y} + 1.375C_{R}$$

$$G = C_{Y} - 0.703C_{R} - 0.328C_{B}$$

$$B = C_{Y} + 1.734C_{B}$$

For 16-bit RGB output, truncation with dithering is used to convert the data from 24 bit to 16 bit.

1.9. GAMMA CORRECTION

The KS0127B programmable gamma tables allows the customer to apply many different type of corrections. These corrections can be a standard 2.2 factor for NTSC or 2.8 for PAL. These factors can be applied in the RGB or YUV domains.

A basic standard gamma equation of

$$R = R'^{2.2}$$

when applied to the R, G, or B signals, generates the response shown as the upper curve below. It is the inverse of the monitor response and thus compensates to produce a linear response.

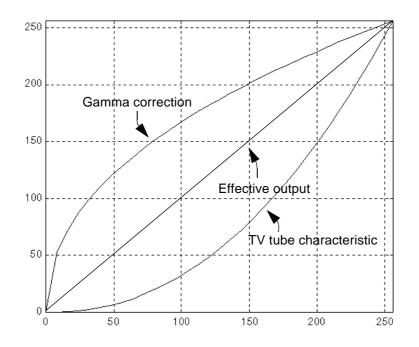


Figure 32. RGB Gamma Correction

1.9.1. Programming the KS0127B

The previous response is easily programmed into the KS0127B loading the 0, 8, 16, 24 etc. values into the GAMMA0,1,2,3 locations. Thus every 8th value is stored. The KS0127B will use linear interpolation to generate the values between every 8th points. This is shown in the following figure.

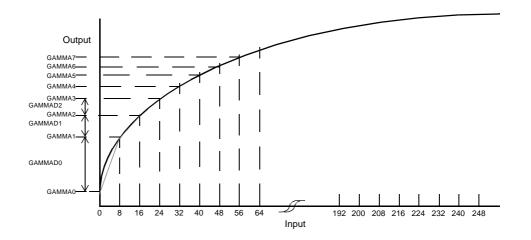


Figure 33. Gamma LUT Programming

Modified on May/04/2000

For ease of design, the difference between adjacent points must also be loaded. The complete data values for the previous gamma factor of 1/2.2 is shown in the table below.

Offset	GAMMA	GAMMAD
	program at index Offset+40h	program at index Offset+60h
0	0	53
1	53	20
2	73	14
3	87	12
4	99	11
5	110	10
6	120	8
7	128	8
8	136	8
9	144	7
А	151	7
В	158	6
С	164	6
D	170	6
Е	176	5
F	181	6
10	187	5
11	192	5
12	197	5
13	202	5
14	207	4
15	211	5
16	216	4
17	220	5
18	225	4
19	229	4
1A	233	4
1B	237	4
1C	241	4
1D	245	4
1E	249	3
1F	252	4

 Table 10:
 RGB Gamma LUT Values

The flexibility of this architecture is shown in the following example. Here it is assumed that the KS0127B is operating in a YUV output mode but some form of Gamma correction is required. By converting the RGB gamma correction function back to the YUV color space, the following function can be applied to the U and V signals for improved color performance. This flexibility can be extended in software to produce many type of customer defined transfer functions.

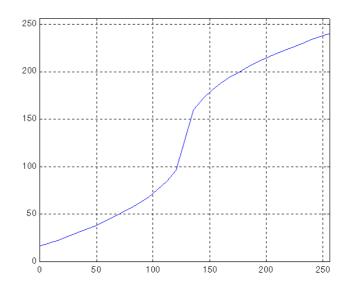


Figure 34. Gamma Correction for Cb and Cr

1.10. DIGITAL VIDEO OUTPUT

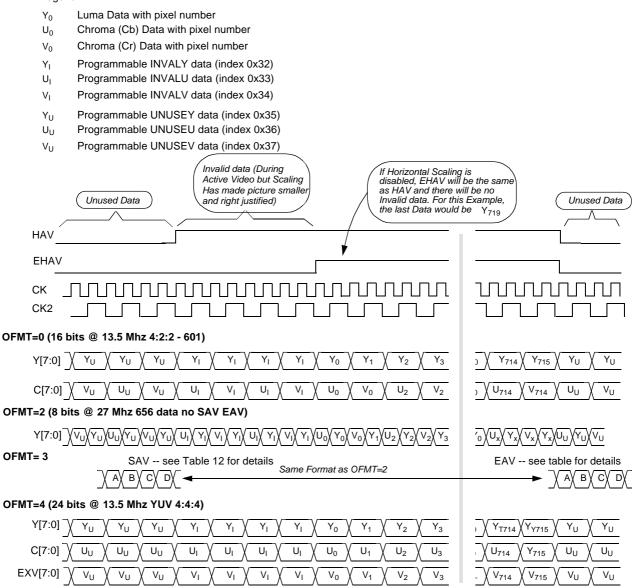
The KS0127B can output digital video data in various formats, which are tabulated in Table 11. All 8-bit output

Clock					(CK2						C	Ж	
OFMT	(0			1		4	5	6	7		2	, 3	
Туре		bCr 2:2		YCbC	r 4:1:1		YCbCr 4:4:4	RGB 565	RGB 888	RGB 888		YCbCr 4:2:2		
Pin	2N	+1	4N	+1	+2	+3	N	Ν	Ν	Ν	4N	+1	+2	+3
C0	Cb0	Cr0					Cb0	B0	B0	B3				
C1	Cb1	Cr1					Cb1	B1	B1	B4				
C2	Cb2	Cr2					Cb2	B2	B2	B5				
C3	Cb3	Cr3					Cb3	B3	B3	B6				
C4	Cb4	Cr4	Cr6	Cr4	Cr2	Cr0	Cb4	B4	B4	B7				
C5	Cb5	Cr5	Cr7	Cr5	Cr3	Cr1	Cb5	G0	B5	G2				
C6	Cb6	Cr6	Cb6	Cb4	Cb2	Cb0	Cb6	G1	B6	G3				
C7	Cb7	Cr7	Cb7	Cb5	Cb3	Cb1	Cb7	G2	B7	G4				
Y0	Y0	Y0	Y0	Y0	Y0	Y0	Y0	G3	G0	G5	Cb0	Y0	Cr0	Y0
Y1	Y1	Y1	Y1	Y1	Y1	Y1	Y1	G4	G1	G6	Cb1	Y1	Cr1	Y1
Y2	Y2	Y2	Y2	Y2	Y2	Y2	Y2	G5	G2	G7	Cb2	Y2	Cr2	Y2
Y3	Y3	Y3	Y3	Y3	Y3	Y3	Y3	R0	G3	R3	Cb3	Y3	Cr3	Y3
Y4	Y4	Y4	Y4	Y4	Y4	Y4	Y4	R1	G4	R4	Cb4	Y4	Cr4	Y4
Y5	Y5	Y5	Y5	Y5	Y5	Y5	Y5	R2	G5	R5	Cb5	Y5	Cr5	Y5
Y6	Y6	Y6	Y6	Y6	Y6	Y6	Y6	R3	G6	R6	Cb6	Y6	Cr6	Y6
Y7	Y7	Y7	Y7	Y7	Y7	Y7	Y7	R4	G7	R7	Cb7	Y7	Cr7	Y7
EXV0							Cr0		R0	B0				
EXV1							Cr1		R1	B1				
EXV2							Cr2		R2	B2				
EXV3							Cr3		R3	G0				
EXV4							Cr4		R4	G1				
EXV5							Cr5		R5	R0				
EXV6							Cr6		R6	R1				
EXV7							Cr7		R7	R2				1

Table 11: Digital Video Output Format

formats use CK as pixel clock; the other formats use CK2 as pixel clock. The first pixel is always aligned to the leading edge of the HAV signal.

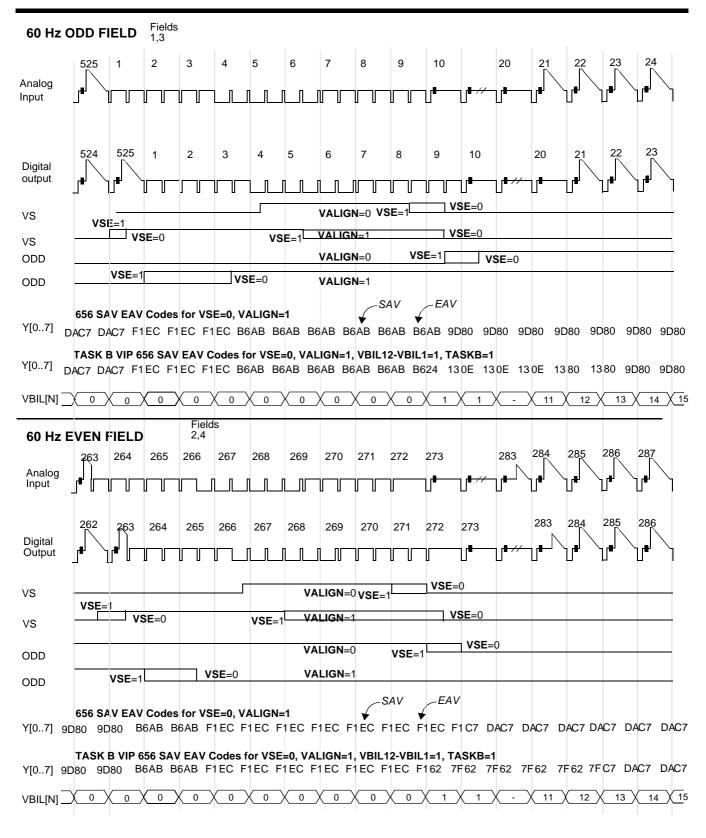
1.10.1. Validation Code Insertion


KS0127B inserts validation codes during inactive video (HAV is inactive), and invalid video (HAV is active but EHAV is inactive) to assist in recognition of scaled data and VBI data. Table 12 lists the available codes, when they are inserted, and related programming registers.

Code	Description
INVALY	This user programmed code is inserted in the Y or G output stream in scaling operation when HAV is active while EHAV is inactive. Insertion of this code is independent of the output format. Related register is INVALY .
INVALU	This user programmed code is inserted in the U or B output stream in scaling operation when HAV is active while EHAV is inactive. Insertion of this code is independent of the output format. Related register is INVALU .
INVALV	This user programmed code is inserted in the V or R output stream in scaling operation when HAV is active while EHAV is inactive. Insertion of this code is independent of the output format. Related register is INVALV .
UNUSEY	This user programmed code is inserted in the Y or G output stream when HAV is inactive and no other reference code is inserted. Insertion of this code is independent of the output format. Related register is UNUSEY .
UNUSEU	This user programmed code is inserted in the U or B output stream when HAV is inactive and no other reference code is inserted. Insertion of this code is independent of the output format. Related register is UNUSEU .
UNUSEV	This user programmed code is inserted in the V or R output stream when HAV is inactive and no other reference code is inserted. Insertion of this code is independent of the output format. Related register is UNUSEV .

An example timing diagram for some of the programmable modes is shown in Figure 35. In this diagram, The field rate is 60 Hz, A CCIR 601 sampling rate has been selected thus giving 720 active pixels. The horizontal scaling ratio has been selected for an output of 718 out of 720 pixels.

Legend



1.10.2. 656 Op Codes

The KS0127B supports timing synchronization through embedded (656) timing reference codes in the output video data stream. This mode is available for output format 3 (**OFMT**[3:0] = 3). The 656 Op Codes follow the CCIR 656 standard. An optional set of 656 Op Codes can be enabled to identify VBI data using the **TASKB** bit.

The (A,B,C,D) inserted codes for 656 output modes are explained below. Locations in the data stream are shown in Figure 35. The D'data is substituted for the standard codes shown in column D if **TASKB** bit is set and the current line is processing VBI data (sliced or raw ADC data format).

Modified on May/04/2000

MULTIMEDIA VIDEO

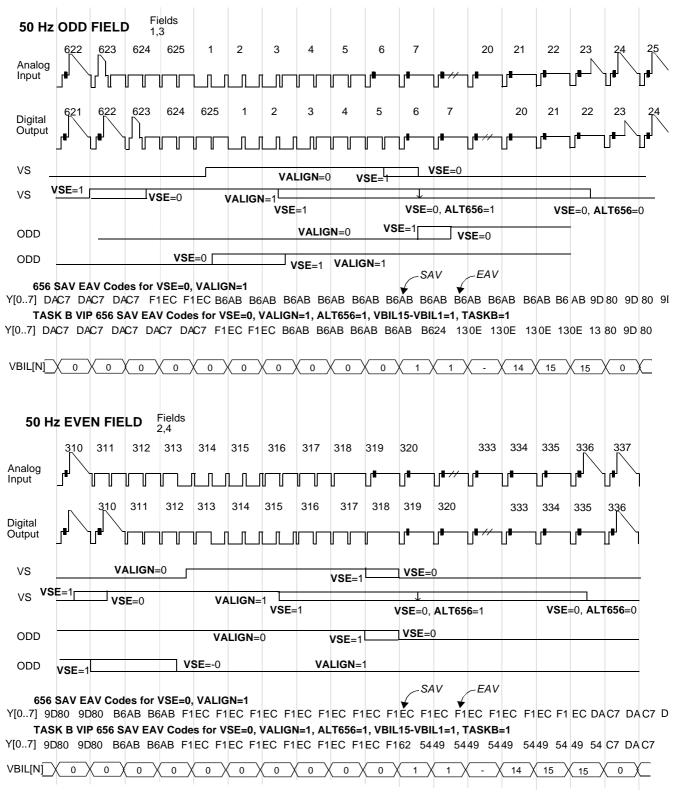


Figure 37. Vertical Timing For 50 Hz Video

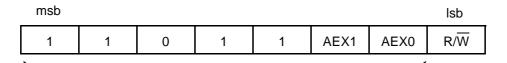
Modified on May/04/2000

	Condition		AV Outp nce Out tur	put timi			656 FVH values			
Field	Vertical	Horizontal	Α	В	С	D	D'	F	v	Н
Field 2	Vertical Blank	End Active Video	FFh	00h	00h	F1h	7Fh	1	1	1
Field 2	Vertical Blank	Start Active Video	FFh	00h	00h	ECh	62h	1	1	0
Field 2	Vertical Active	End Active Video	FFh	00h	00h	DAh	54h	1	0	1
Field 2	Vertical Active	Start Active Video	FFh	00h	00h	C7h	49h	1	0	0
Field 1	Vertical Blank	End Active Video	FFh	00h	00h	B6h	38h	0	1	1
Field 1	Vertical Blank	Start Active Video	FFh	00h	00h	ABh	24h	0	1	0
Field 1	Vertical Active	End Active Video	FFh	00h	00h	9Dh	13h	0	0	1
Field 1	Vertical Active	Start Active Video	FFh	00h	00h	80h	0Eh	0	0	0

Table 13: 656 and TASKB 656 Op Codes

1.10.3. 656 Op Code Vertical Transitions

The vertical transition locations of the various 656 Op Codes are shown in Figure 36 and Figure 37. Note that for proper transition locations of the SAV and EAV Op Codes **VSE**=0 and **VALIGN**=1.


1.11. HOST INTERFACE

The KS0127B supports the IIC serial interface for programming the chip registers.

1.11.1. IIC Interface

The two wire interface consists of the SCLK and SDAT signals. Data can be written to or read from the KS0127B. For both read and write, each byte is transferred MSB first, and the data bit is valid when the SCLK is high.

To write to the slave device, the host initiates a transfer cycle with a START signal. The START signal is HIGH to LOW transition on the SDAT while the SCLK is high. The host then sends a byte consisting of the 7-bit slave device ID and a 0 in the R/W bit. The arrangement for the slave device ID and the R/W bit is depicted in Figure 38. AEX1 and AEX0 are configuration pins used to configure the KS0127B to use one of the four addresses. Up to four KS0127B's can be used in one system each with a unique address.

slave device ID

Figure 38. IIC Slave Device ID and R/W Byte

The second byte the host sends is the base register index. The host then sends the data. The KS0127B increments the index automatically after each byte of data is sent. Therefore, the host can write multiple bytes to the slave if they are in sequential order. The host completes the transfer cycle with a STOP signal which is a LOW to HIGH transition when the SCLK is high.

Each byte transfer consists of 9 clocks. When writing to the KS0127B, an acknowledge signal is asserted by the salve device during the 9th clock.

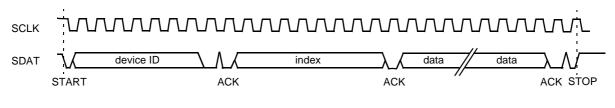


Figure 39. IIC Data Write

A read cycle takes two START-STOP phases. The first phase is a write to the index register. The second phase is the read from the data register.

The host initiates the first phase by sending the START signal. It then sends the slave device ID along with a 0 in the R/W position. The index is then sent followed by the STOP signal.

The second phase also starts with the START signal. It then sends the slave device ID but with a 1 in the R/W position to indicate data is to be read from the slave device. The host uses the SCLK to shift data out from the KS0127B. A typical second phase in a read transaction is depicted in Figure 40. Auto index increment is supported in Read mode.

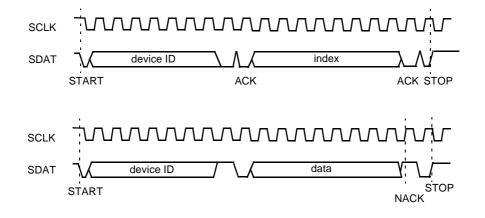


Figure 40. IIC Data Read

2. CONTROL REGISTER DESCRIPTION

This section contains information concerning the programmable control registers. Table 14 provides the default power up values for each index, and a bit map for each register. The following pages describe each register in detail and the possible programing values (an * indicates the power-on default). Gamma correction registers are write only. When the index register points to any of the Gamma correction register, the Gamma look-up table is put into a program mode. Normal operation resumes when the index is outside the range from 0x40 to 0xFF.

Indox	Macania	Defeult				Bit I	Мар				
Index	Mnemonic	Default	7	6	5	4	3	2	1	0	
0x00	STAT	RO	CHIPID	VBIFLG	NOVID	FFRDET	PALDET	CDET	HLOCK	CLOCK	
0x01	CMDA	2C	POWDN	VSE	HFSE	L[1:0]	XT24	PIXSEL	MNFMT	IFMT	
0x02	CMDB	20	AGCGN	VALIGN	AGCOVF	AGCFRZ		INSE	L[3:0]		
0x03	CMDC	00	VMEN	TSTGE1	0	TSTGPK	TSTGPH	TSTG	FR[1:0]	TSTGEN	
0x04	CMDD	00	EAV	0	CKDIR	INPS	L[1:0]	SYNDIR	Y1MHZ	GPPORT	
0x05	HAVB	00			1	HAVE	B[7:0]	I	1		
0x06	HAVE	00				HAVE	E[7:0]				
0x07	HS1B	00				HS1E	3[8:1]				
0x08	HS1E	00				HS1E	E[8:1]				
0x09	HS2B	00				HS2E	3[8:1]				
0x0A	HS2E	00				HS2E	E[8:1]				
0x0B	AGC	50		AGC[7:0]							
0x0C	HXTRA	00	ŀ	HAVB[10:8	5]	ł	HAVE[10:8]	HS1BE0	HS2BE0	
0x0D	CDEM	00	OUTHIZ	FSEC	0	CIFCM	1P[1:0]	0	0	0	
0x0E	PORTAB	00	DIRB	[DATAB[2:0]	DIRA	[DATAA[2:0]	
0x0F	LUMA	00	0	UNIT	RGBH	PED	HYBWR	CTRAP	HYPI	<[1:0]	
0x10	CON	00			1	CON	T[7:0]	I	1		
0x11	BRT	00				BRT	[7:0]				
0x12	CHROMA	08	ACCFRZ	PALM	PALN	CBW	COR	E[1:0]	CKIL	L[1:0]	
0x13	CHROMB	00		CDL	Y[3:0]			SCHC	MP[3:0]		
0x14	DEMOD	00	FSCDET	SECDET	CDMLPF	CTRACK	MNFS	C[1:0]	MNSEC	AM[1:0]	
0x15	SAT	00				SAT	[7:0]				
0x16	HUE	00				HUE	[7:0]				
0x17	VERTIA	00	MNYCMB	Y	CMBCO[2:	0]	VRT2X	\	VCTRL[2:0]	
0x18	VERTIB	00	I	HYLPF[2:0]	HYBWI	HYDEC	VSCLE	EN[1:0]	0	
0x19	VERTIC	03	MNCCMB	С	CMBCO[2:	0]	ACMBEN	VYBW	EVAVEV	EVAVOD	
0x1A	HSCLL	00				HSCL[6:0]				CMBMOD	
0x1B	HSCLH	00				HSCL	[14:7]				
0x1C	VSCLL	FC			VSC	_[5:0]			ACMBCO	ACMBRE	
0x1D	VSCLH	FF				VSCL	[13:6]		1	<u> </u>	
0x1E	OFMTA	-	GAME	N[1:0]	OEN	C[1:0]		OFM	T[3:0]		
0x1F	OFMTB	00	VSVAV	EVAN	ID[1:0]	EVHS1	EVHAV	EVEHAV	EVAVG	EVANDL	

Table 14: Register Summary

MULTIMEDIA VIDEO

Table 14:	Register	Summary
-----------	----------	---------

						Bit	Мар				
Index	Mnemonic	Default	7	6	5	4	3	2	1	0	
0x20	VBICTL	00	VBCVBS	VYFM	T[1:0]	VBINSRT	ODDEN	EVENEN	ODDC	S[1:0]	
0x21	CCDAT1	RO	b0	b1	b2	b3	b4	b5	b6	P1	
0x22	CCDAT2	RO	b0	b1	b2	b3	b4	b5	b6	P2	
0x23	VBIL30	00	VB	IL3	VB	IL2	VB	IL1	VB	IL0	
0x24	VBIL74	00	VB	IL7	VB	IL6	VB	IL5	VB	IL4	
0x25	VBIL118	00	VBI	L11	VBI	L10	VB	IL9	VB	IL8	
0x26	VBIL1512	00	VBI	L15	VBI	L14	VBI	L13	VBI	L12	
0x27	TTFRAM	00				TTFRA	M[7:0]		•		
0x28	TESTA	00	0	0	0	0	0	0	0	0	
0x29	UVOFFH	00	TSTCLC	TSTCGN	0	TSTCFR	UOFF	ST[5:4]	VOFF	ST[5:4]	
0x2A	UVOFFL	33		UOFF	ST[3:0]			VOFF	ST[3:0]		
0x2B	UGAIN	00				UGAI	N[7:0]				
0x2C	VGAIN	00		VGAIN[7:0]							
0x2D	VAVB	23		VAVB[6:1] VAVOD0 VAVEV							
0x2E	VAVE	82		VAVE[8:1]							
0x2F	CTRACK	00	0	0	DMC1	「L[1:0]	CGT	C[1:0]	CFTC	C[1:0]	
0x30	POLCTL	00	EVAVPL	VSPL	ODDPL	HAVPL	EHAVPL	HS2PL	VAVPL	HS1PL	
0x31	REFCOD	00	YCRANG	0	0	0	0	0	0	0	
0x32	INVALY	10				INVAL	Y[7:0]				
0x33	INVALU	80				INVAL	.U[7:0]				
0x34	INVALV	80				INVAL	V[7:0]				
0x35	UNUSEY	10				UNUS	EY[7:0]				
0x36	UNUSEU	80				UNUSE	EU[7:0]				
0x37	UNUSEV	80				UNUSI	EV[7:0]				
0x38	EXCTRL	00	0	ENINCST	0	-	AUCPWD	0	0	CLEVEL	
0x39	TRACKA	00	STCTRL	MAC_DET	VCR_DET	VCR_L	EV[1:0]	ATCTRAP	VCTRAP	AGCLSB	
0x3A	VBICTLB	00	VBISWAP	TT_SY	′S[1:0]	VBIMID	NEW_CC	CC_OVFL	YOFFENB	COFFENB	
0x3B	TRACKB	00	ALT656	VBI_PH	VBI_FR	PH_CTRL	VNOISCT	AGC_L	PG[1:0]	AGC_LKG	
0x3C	RTC	00	RTC_DTO	RTC_PID	0	TDMOD	0	0	0	0	
0x3D	CMDE	09	ODFST	VSALG	HCOF	RE[1:0]		CHIP	REVID		
0x3E	VSDEL	00	TR_MS	NOVIDC			VSDE	C[5:0]			
0x3F	CMDF	00	CTRAPFSC	VIPMODE	EVAVY	UVDLEN	UVDLSL	REGUD	TASKB	CBWI	
0x40-5F	GAMMA	-	GAMMA0[7:0] - GAMMA31[7:0]								
0x60-7F	GAMMAD	-	-	-		GAMM	AD0[5:0] -	GAMMAD	31[5:0]		
0xC0-DF	GAMUV	-			GAM	IUV0[7:0] -	GAMUV3	1[7:0]			
0xE0-FF	GAMUVD	-	-	-		GAMU	VD0[5:0] -	GAMUVD	31[5:0]		

	Read Only Status Bits											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
00h	STAT	CHIPID	VBIFLG	NOVID	FFRDET	PALDET	CDET	HLOCK	CLOCK			

CLOCK	Status for	color lock.						
	0	Not locked.						
	1	Color lock achieved.						
HLOCK	Status for	current line tracking mode.						
	0	Chip is in initial tracking mode.						
	1	Chip is in steady state tracking mode.						
CDET	Status for detection of color.							
	0	No color signal is detected.						
	1	Color signal is detected.						
PALDET	Status for CLOCK is	current detected color format. Information contained in this bit is valid only if 31.						
	0	NTSC color format.						
	1	PAL color format.						
FFRDET	Status for current detected field frequency.							
	0	50 Hz field frequency, i.e. N,B,G,H,I,D,K,K1,L system.						
	1	60 Hz field frequency, i.e. M system.						
NOVID		ect flag. This bit should not be used for detecting the presence of a TV channel putput of a TV tuner.						
	0	Sync has been detected for the last 32 lines.						
	1	No sync has been detected.						
VBIFLG	Vertical bl	anking interval flag.						
	0	Video is in active region.						
	1	Video is in vertical blanking region.						
CHIPID	Chip versi	on ID. Please refer to the CHIPREVID bits for additional information						
	0	KS0122S.						
	1	KS0127.						

MULTIMEDIA VIDEO

				Control F	Register A								
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0				
01h	CMDA	POWDN	VSE	HFSE	L[1:0]	XT24	PIXSEL	MNFMT	IFMT				
IFMT		anual video i NFMT =0.	nput stand	ard select.	Standard se	election can	be controlle	ed automatic	ally if				
	0	Chi	ip is forced	to assume	input is 50	Hz.*							
	1	Chi	ip is forced	to assume	input is 60	Hz.							
MNFM	T Ma	Manual input format control override. When this bit is 1 the IFMT bit is enabled.											
	0	NT	e chip dete SC if 60 Hz L/SECAM i	Ζ.	input video	standard ba	ased on the	detected fiel	d rate:*				
	1	Inp	ut video sta	andard is se	elected with	the IFMT b	oit.						
PIXSE	L Se	elect pixel sa	mpling rate	Э.									
	0	Ou	tput data is	at square	oixel rate.								
	1	Ou	tput data is	at CCIR 60	01 rate.*								
XT24	Se	elect the exte	ernal clock	reference fi	equency.								
	0	Ext	ernal clock	is 26.8 MH	lz.								
	1	Ext	ernal clock	is 24.576 N	MHz.*								
HFSEL	_[1:0] Ho	Horizontal tracking loop frequency select.											
	0	For	ce loop to	very fast.									
	1	For	ce loop to	fast.									
	2	For	ce loop to	VCR time c	onstant.*								
	3	For	ce loop to	TV time cor	nstant.								
VSE	Cł	nange the ve	rtical end l	ocation of tl	ne VS.								
	0	Lin	e 10/10.5.*										
	1	Lin	e 9/9.5.										
POWD	N Po	wer down m	node.										
	0	No	rmal opera	tion.*									
	1	dis	abled. The		ie CK/CK2			CK2 generati ecent frequer					

				Control R	legister B						
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
02h	CMDB	AGCGN	VALIGN	AGCOVF	AGCFRZ	INSEL[3:0]					
INSEL	_[3:0] Ar	alog input o	hannel sele	ect.							
	0	A١	0 is compo	site input.*							
	1	A١	1 is compo	site input.							
	2	A١	2 is compo	site input.							
4 AC0 is composite input.											
	5	AC	C1 is compo	site input.							
	6	AC	2 is compo	site input.							
	8	A١	′0 is lumina	nce input, A	C0 is chrom	inance inpu	ut.				
	9	A١	1 is lumina	nce input, A	C1 is chrom	inance inpu	ut.				
	А	A١	'2 is lumina	nce input, A	AC2 is chrom	iinance inpu	ut.				
	F	A٦	′2 is lumina	nce input, A	AC1 is Cb inp	out, AC2 is	Cr input.				
AGCF	RZ Fr	eeze the an	alog AGC f	or the Y and	d C paths at	their curren	t values.				
	0	AC	GC is runnir	ng. Reading	AGC registe	er returns th	e current A	GC gain.*			
	1	AC	GC is frozer	. Gain can	be changed	or read with	AGC regis	ster.			
AGCC	OVF AC	GC gain con	trol mode.								
	0	AC	AGC gain tracks to sync tip and back porch delta.								
	1			ows, AGC ga k porch trac	ain will be re king).*	duced (this	has higher	priority ove	r normal		
VALIG	SN VS	6 edge align	ment contro	ol.							
	0	pu	-	-	during serrati aligned to h	• •	••••••				
	1		•	• •	ed to half line always aligne	•	•	•	g on the		
AGCO	GN AC	GC gain calo	culation.								
	0		ormal mode ual to 68 Al		calculation is	s based on	sync tip to t	oack porch	difference		
	1	co Wi	de. This wil	l reduce the conjunctior	ase on sync AGC gain b with PED a	y a factor of	1/1.25 com	pare to nor	mal mode.		

MULTIMEDIA VIDEO

				Control	register C				
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
03h	CMDC	VMEN	TSTGE1	0	TSTGPK	TSTGPH	TSTG	FR[1:0]	TSTGEN
TSTG	EN En	able manua	al control of	horizontal	phase and f	requency tra	icking.		
	0	Aut	o phase and	l frequenc	y tracking.*		Ū		
	1		ble manual GPH .	control of	horizontal pl	nase and fre	quency wit	h TSTGFR	[1:0] and
TSTG	R[1:0] WI	hen TSTGE	N == 1, the	se two bits	control the l	norizontal fre	equency tra	acking.	
	00	Sto	p frequency	tracking a	and freeze th	e frequency	at the curre	ent value.*	
	01	Hor	izontal frequ	uency trac	ks the input.				
	1X		•		king ignores ut pixel rate :				
TSTG	PH WI	hen TSTGE	N == 1, this	bit contro	ls the horizo	ntal phase tr	acking.		
	0	No	phase track	ing.*					
	1	Hor	izontal phas	e tracks tl	ne input vide	o or HS1 inp	out if in slav	/e mode.	
TSTG	PK If T	TSTGE1 ==	1, this bit c	ontrols AG	SC.				
	0	AG	C clamps to	back porc	h and gain is	set based o	on sync tip-	back porch	n difference
	1	AG	C clamps to	sync tip a	nd gain is se	t based on p	beak-valley	difference).
TSTG	E1 En	ables the fu	Inction of T	STGPK.					
	0	Disa	ables TSTG	PK.*					
	1	Ena	bles TSTG	PK.					
VMEN	Ve	ertical maste	r mode.						
	0	No	rmal vertica	l sync ope	eration.*				
	1				ut and free ru for a slave d		or 60 Hz. 1	This mode	can be used

	Control Register D											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
04h	CMDD	EAV	0	CKDIR	INPS	L[1:0]	SYNDIR	Y1MHZ	GPPORT			
GPPOF	rea	eneral purpos ad only and r I appear at P	eflects the I	-	•	-	-					
Y1MHZ	Lu	ma bandwidt	h control.									
	0 Luma bandwidth is controlled by other luma filters in the luma path.*											
1 Luma data is low pass filtered to 1MHz bandwidth.												
SYNDI	२ मध	S1 and VS pir	n direction o	control.								
	0	HS1	and VS ar	e output.*								
	1	HS1	HS1 and VS are input.									
INPSL[1:0] Vie	deo input and	l clock sour	ce select.								
	0		Video source is analog and connected to the chips analog input. Clock is internally generated.*									
	1	Vide	eo source is	8-bit digita	I CbYCr and	d connected	to EXV0 th	rough EXV	7 pins.			
	3	Vide	eo source is	8-bit digitiz	ed CVBS a	nd connect	ed to EXV0	through EX	V7 pins.			
CKDIR	Cle	ock select.										
	0	Cloc	ck is from in	iternal clock	generator.	A reference	e clock at X	TALI pin is	required.*			
1 Clock is from CK pin. When this is selected, the CK pin automatica input.								natically be	comes an			
EAV	In	8-bit digital C	bYCr input	mode, this	bit selects t	he sync sou	urce.					
	0	Hori	zontal and	vertical syn	cs are from	HS1 and V	S pins, resp	ectively.*				
	1	Syn	cs are emb	edded in the	e 8-bit digita	I data strea	m (CCIR 6	56 compatik	ole).			

	HAV Start Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
05h	HAVB				HAVB	[7:0]			·			
0Ch	HXTRA	HAVB[10:8] HAVE[10:8] HS1BE0						HS2BE0				

HAVB[10:0] This 11-bit register is used to define the start location of the HAV signal relative to the sync tip (for CVBS input, this is the composite video sync tip. For 8-bit CbYCr input, this is the leading edge of the HS1 or EAV). The content of this register is a 2s complement number which is used as an offset to the default. The resolution for this register is 1 CK clock.

	HAV End Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
06h	HAVE				HAVE	[7:0]						
0Ch	HXTRA		HAVB[10:8] HAVE[10:8] HS1BE0 HS									

HAVE[10:0] This 11-bit register is used to define the end location of the HAV signal relative to the sync tip. The content of this register is a 2s complement number which is used as an offset to the default The resolution for this register is 1 CK clock.

	HS1 Start Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
07h	HS1B				HS1B	[8:1]						
0Ch	HXTRA	ł	HAVB[10:8] HAVE[10:8] HS1BE0 HS2B									

HS1B[8:1] - If HS1 is programmed as an output, this 9-bit register defines the start location of the HS1 HS1BE0 signal. The content of this register is a 2s complement number which is used as an offset to the default. The resolution for this register is 1 CK clock.

MULTIMEDIA VIDEO

	HS1 End Control											
Index	Mnemonic	bit 7	bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0									
08h	HS1E				HS1E	[8:1]						
0Ch	HXTRA		HAVB[10:8] HAVE[10:8] HS1BE0 HS2BE									

HS1E[8:1] -If HS1 is programmed as an output, this 9-bit register defines the end location of the HS1HS1BE0signal. The content of this register is a 2s complement number which is used as an offset to the
default. The resolution for this register is 1 CK clock.

	HS2 Start Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
09h	HS2B				HS2B	[8:1]						
0Ch	HXTRA		HAVB[10:8] HAVE[10:8] HS1BE0 HS2BE									

HS2B[8:1] -This 9-bit register defines the start location of the HS2 signal. The content of this register is aHS2BE02s complement number which is used as an offset to the default HS2B location. The resolution
for this register is 1 CK clock.

	HS2 End Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0Ah	HS2E				HS2E	[8:1]						
0Ch	HXTRA		HAVB[10:8] HAVE[10:8] HS1BE0 HS2BE0									

HS2E[8:1] -This 9-bit register defines the end location of the HS2 signal. The content of this register is a 2sHS2BE0complement number which is used as an offset to the default HS2E location. The resolution for
this register is 1 CK clock.

MULTIMEDIA VIDEO

	AGC Control											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x0B	0x0B AGC AGC[7:0]											

AGC[7:0] This register is used to manually set AGC when **AGCFRZ** is set to "1". The content in the register is unsigned.

	Chroma Demodulation Control											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0Dh	CDEM	OUTHIZ	FSEC	0	CIFCMP[1:0]		0	0	0			

CIFCMP[1:0]	IF compe	ensation for the chroma path.
	0	No compensation.*
	1	Upper chroma side band is 1 dB higher than lower side band.
	2	Upper chroma side band is 3 dB higher than lower side band.
	3	Upper chroma side band is 6 dB higher than lower side band.
FSEC	Chroma f	requency demodulation filter select for SECAM video.
	0	Select SECAM chroma frequency demodulation filter if SECAM video is detected.*
	1	Always use SECAM chroma frequency demodulation filter.
OUTHIZ	logic LOV	e software output three-state control bit. If this bit is set to a "1", or the OEN pin is at a V level, output pins can be selectively put in the high impedance state using the I software control bits OENC[1:0] .
	0	This is default setting.*
	1	This will enable the output pins to be three-stated regardless the state of the OEN pin.

				Port A and	B Control							
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0Eh	PORTAB	DIRB		DATAB[2:0]]	DIRA		DATAA[2:0]				
DATAA	[2:0] Por	t A data sel	ect. For inte	ernal date si	gnal locatio	ns.						
	0			•	n the interna		th.*					
	1				BPG (back	• •						
	2	Por	Port A is connected to the SYG (sync tip gate) signal.									
	3	Por	Port A is connected to the CBG (color burst gate) signal.									
	4		Port A is connected to the CBGW (color burst gate wide) signal. The CBGW is high for the entire color burst period.									
	5	Por	t A is conne	ected to the	SLICE (mid	way of the	sync tip) si	ignal.				
	6	Por	t A is conne	ected to the	VBI (vertica	l blanking ir	nterval) sig	nal.				
	7	Por	t A is conne	ect to the G	PPORT bit.							
DIRA	Por	t A directior	o control.									
	0	sele	Port A is configured as input. The input is connected directly to the signal path selected by DATAA[2:0] . The internally generated gate signal is disconnected from the signal path.*									
	1		t A is an ou FAA[2:0] .	tput and is o	driven by the	e internally	generated	signal as sel	ected by			
DATAB	[2:0] Por	t B data sel	ect. For inte	ernal gate si	gnal locatio	ns.						
	0	Por	t B is discor	nnected fror	n the intern	al signal pa	th.*					
	1	Por	t B is conne	ected to the	SCH (sync	tip to color l	ourst phase	e) signal.				
	2	Por	t B is conne	ected to the	FH2 (twice	per line pul	ses) signal					
	3	Por	t B is conne	ected to the	FS_PULSE	(falling edg	e of the sy	nc tip) signa	Ι.			
	4							This signal or RGB data				
	5				VBI_PROC ut sliced VB	•) signal. Th	nis signal is ł	high for			
	6	Por	t B is conne	ected to the	VS (Vertica	l Sync) sign	al.					
	7	inte	rface transi	nits phase a	•	cy informati	on to a vid	t). This single eo encoder s	•			
DIRB	Por	t B directior	o control.									
	0	sele	-	TAB[2:0].	•		•	to the signa al is disconn	•			
	1		t B is an ou FAB[2:0] .	tput and is o	driven by the	e internally	generated	signal as sel	ected by			

	Luma Control Register												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0				
0x0F	LUMA	0	UNIT	RGBH	PED	HYBWR	CTRAP	HYPI	<[1:0]				
HYPK[1	:0] Lum	ninance hor	izontal peal	king control	around 3 I	MHz.							
	0	Les	s than nom	inal peaking	.*								
	1	Non	ninal peakir	ng.									
	2	Incr	eased peal	king.									
	3	Мах	imum peak	king.									
CTRAP	Chr	oma trap (n	otch filter) i	n the luma p	oath.								
	0	No	chroma trap	o. This mode	e is recomr	nended for S	-video or co	mponent v	ideo input. [•]				
	1	Chr	oma trap is	enabled.									
HYBWF	R Lum	ninance hor	izontal ban	dwidth reduc	ction contro	ol.							
	0	Full	bandwidth.	*									
	1	Red	luced band	width.									
PED	Ena	ble gain co	rrection for	7.5 blank-to	-black set	up (pedestal)).						
	0	No	pedestal. 0	% = Y code	16. 100%	= Y code 23	5.*						
	1			for 7.5% bla oduce Y code		k setup (pede	estal). 7.5%	= Y code 1	6. 7.5% -				
RGBH	Higł	h gain to pro	oduce full ra	ange Y for 0	% (or 7.5%	6 if PED = 1)	to 100% in	put.					
	0	Blac	k (0% or 7	.5%) to peal	k white(100	0%) input pro	oduce Y cod	e 16 to 235	5.*.				
	1	Blac	ck (0% or 7	.5%) to peal	k white(10	0%) input pro	oduce Y cod	le 0 to 255.					
UNIT				e both set to PSL[1:0] = 1		ng this bit to	a "1"produce	es a unit ga	ain for				
	0	Lum	na DC gain	is controlled	l by PED a	ind RGBH as	s described	for each bi	t.*				
	1	Lum	na DC gain	is unity for C	CCIR 601 o	digital input.							

MULTIMEDIA VIDEO

	Contrast Control											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x10	0x10 CON CON[7:0]											

CON[7:0] This 8-bit register contains a 2s compliment number for contrast control.

	Brightness Control											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x11	0x11 BRT BRT[7:0]											

BRT[7:0] Brightness control register. The number contained in the register is 2s compliment.

	Chroma Control Register A												
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0												
0x12 CHROMA ACCFRZ PALM PALN CBW CORE[1:0] CKILL[1:0]													

CKILL[1:0]	Color kill.	
	0	Auto detect mode. If color burst is too low or no color burst, chroma data is forced to code 128.*
	2	Chroma is always ON.
	3	Chroma data is always forced to code 128.
CORE[1:0]	Chroma c	lata coring.
	0	No coring.
	1	Chroma data within the range 128+/-1, inclusive, will be force to 128.
	2	Chroma data within the range 128+/-3, inclusive, will be force to 128.*
	3	Chroma data within the range 128+/-7, inclusive, will be force to 128.
CBW	Chroma b	andwidth control.
	0	Chroma 3 dB bandwidth is 850 kHz.*
	1	Chroma 3 dB bandwidth is 550 kHz.
PALN	Select col	lor tracking for PAL-N, or NTSC-N when input field rate is 50 Hz and Fsc is 3.58 MHz.
	0	Select NTSC-N.*
	1	Select PAL-N.
PALM	Select co	lor tracking for PAL-M or NTSC-M when input field rate is 60 Hz.
	0	Select color tracking for NTSC-M.*
	1	Select color tracking for PAL-M.
ACCFRZ	Chroma g	ain tracking freeze control.
	0	Chroma gain tracks the input. Color saturation can be adjusted with SAT.*
	1	Chroma gain freezes at the current saturation level.

	Chroma Control Register B											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x13	0x13 CHROMB CDLY[3:0] SCHCMP[3:0]											

SCHCMP[3:0] Phase constant compare value for color burst phase relative to sync tip. Each step is 22.5 degrees with the value of 0 equal to 0 degree.

CDLY[3:0]

Chroma path group delay relative to the luma path (in unit of CK):

onioniu p	un group ut
0	No delay.*
1	-0.5
2	1
3	0.5
4	2
5	1.5
6	3
7	2.5
8	-4
9	-4.5
А	-3
В	-3.5
С	-2
D	-2.5
E	-1
F	-1.5

	Chroma Demodulation Control and Status											
Index												
0x14	DEMC	D	FSCDET	SECDET	CDMLPF	CTRACK	MNFS	C[1:0]	MNSEC	AM[1:0]		
MNSEC	CAM[1:0]	Ena	ble manual	SECAM in	put detectio	n.						
		0	Dete	ection of SE	CAM input	is automatio	c. *					
		2	For	ce the chip	to assume i	input is not S	SECAM.					
		3	For	ce the chip	to assume i	input is SEC	AM.					
MNFSC	[1:0]	Ena	ble manual	Fsc detect	ion.							
0 Detection of Fsc frequency is automatic.*												
		2	For	ce chip to a	ssume inpu	t Fsc is 4.43	BMHz or 4.	286 MHz.				
		3	For	Force chip to assume input Fsc is 3.58 MHz.								
CTRAC	К	Chr	oma freque	ncy tracking	g mode.							
		0	Chr	oma freque	ncy tracking	g is based o	n the field r	ate and Fs	c.*			
		1	Chr	oma freque	ncy tracking	g is based o	n field rate	only.				
CDMLP	۲F	Вур	ass the LPI	in the chro	oma demod	lulator.						
		0	Chr	oma data p	ass through	the LPF for	color dem	odulation.*				
		1	Chr	oma data b	ypass the L	PF. This set	ting is used	d for compo	onent video	input.		
SECDE	т	SEC	CAM detecti	ion (read or	nly).							
		0	Chip	o did not de	tect SECA	M input.						
		1	Chi	o detected	SECAM inp	ut.						
FSCDE	т	Colo	or subcarrie	r detection	(read only)							
		0	Chij	o detected	4.43 MHz o	r 4.286 MHz	Fsc.					
		1	Chip	o detected 3	3.58 MHz F	SC.						

MULTIMEDIA VIDEO

	Color Saturation Control											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x15 SAT SAT[7:0]												

SAT[7:0] Color saturation control register. Register content is in 2s compliment if **TSTCGN=**0. 0 value corresponds to nominal saturation.

	Hue Control											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x16	0x16 HUE HUE[7:0]											

HUE[7:0] Hue control register. The register content is in 2s compliment format. It covers the range from -180° to +178.59° degree. The resolution is 1.41°/LSB.

		sing conti				
					bit 0	
INYCMB Y	CMBCO[2:	0]	VRT2X		VCTRL[2:0]	
nance vertical filter co						
Scaler uses LP	F path, con	nb uses HP	F.*			
Scaler uses ful	bandwidth	, comb is di	sabled.			
Scaler is disab	ed, comb u	ses full ban	dwidth.			
Scaler uses LF	F, comb is	disabled.				
Scaler is disab	ed, comb u	ses HPF.				
ap vertical scaler filter	select.					
Select 3-tap ve	rtical scaler	filter.*				
Select 5-tap ve line is less thar				e used only	if horizontal	ly cropped
comb filter coefficier	ts selectior	when the	MNYCMB is	set to "1".		
[1/4 1/2 1/4].*						
[3/8 1/2 1/8].						
[1/2 1/2 0].						
[1 0 0].						
[0 1 0].						
[1/2 0 1/2].						
[0 1/2 1/2].						
[1/8 1/2 3/8].						
t between auto and r	nanual luma	a comb filte	r coefficients	5.		
Luma comb filt standard.*	er coefficier	nts are auto	matically sel	ected base	ed on input v	ideo
Luma comb filt	er coefficier	nts are sele	cted with YC	MBCO[2:0)] .	
	Luma comb filte standard.*	Luma comb filter coefficier standard.*	Luma comb filter coefficients are auto standard.*	Luma comb filter coefficients are automatically sel standard.*	Luma comb filter coefficients are automatically selected base standard.*	Luma comb filter coefficients are automatically selected based on input v

	Vertical Processing Control B											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x18	0x18 VERTIB HYLPF[2:0] HYBWI HYDEC VSCLEN[1:0] 0											

VSCLEN[1:0]	Vertical so	caling enable.
	0	Vertical scaling is enabled.*
	1	Vertical scaling is disabled.
	2	Vertical scaling is disabled. Video is 1-line delayed.
	3	Vertical scaling is disabled. Video is 2-line delayed.
HYDEC	Luma path	n decimation filter enable.
	0	Luma path decimation is enabled.*
	1	Luma path decimation is disabled.
HYBWI	Luma path	n decimation filter bandwidth select.
	0	Normal bandwidth.*
	1	Bandwidth is 1 MHz higher.
HYLPF[2:0]	Horizonta	I luma LPF bandwidth control.
	0	Full bandwidth.*
	1	4.5 MHz bandwidth.
	2	3.5 MHz bandwidth.
	3	2.5 MHz bandwidth.
	4	1.5 MHz bandwidth.

			Verti	cal Proces	ssing Cont	trol C			
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x19	VERTIC	MNCCMB	C	CMBCO[2	:0]	ACMBEN	VYBW	EVAVEV	EVAVOD
		-							
EVAVO	D Ena	able VAV sig	nal output	during ODE	D field.				
	0	VAV	signal is d	isabled (alv	ways inacti [,]	ve) during O[DD field.		
	1	VAV	signal is e	nabled dur	ing ODD fie	eld.*			
EVAVE	V Ena	able VAV sig	nal output	during EVE	N field.				
	0	VAV	signal is d	isabled (alv	ways inacti [,]	ve) during E\	/EN field.		
	1	VAV	signal is e	nabled dur	ing EVEN f	ield.*			
VYBW	Lun	na vertical b	andwidth co	ontrol.					
	0	Full	bandwidth.	*					
	1	Red	uced band	width.					
ACMBE	N Ena	able luma ac	tive comb f	or NTSC.					
	0	Activ	ve comb is	disabled.*					
	1	Activ	ve comb is	enabled.					
CCMBC	O[2:0] Ma	nual chorma	comb filter	coefficient	s select.				
	0	Sele	ct the coef	ficient set [1/2 1/2 0] (i	if VRT2X = 0).*		
	1	Sele	ct the coef	ficient set [1/4 1/2 1/4]	(if VRT2X =	0).		
	2	Sele	ct the coef	ficient set [0 1/2 1/2 0	0] (if VRT2X	= 1).		
	3	Sele	ct the coef	ficient set [0 1/4 1/2 1/	/4 0] (if VRT2	X = 1).		
	4	Sele	ct the coef	ficient set [1 0 0].				
	5	Sele	ct the coef	ficient set [0 1 0].				
	6	Sele	ct the coef	ficient set [0 0 1].				
	7	No c	output (disa	bled).					
MNCCM	1B Chr	oma comb f	Iter coeffic	ients are se	elected auto	omatically or	manually.		
	0			ts are auto AM must us		elected base e.*	d on the se	elected video	o input
	1	Filte	r coefficien	ts are seled	cted manua	ally with CCM	IBCO[2:0]		

MULTIMEDIA VIDEO

	Horizontal Scaling Ratio											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x1A	HSCLL		HSCL[6:0]									
0x1B	HSCLH		HSCL[14:7]									

CMBMOD	This bit co	ontrols when comb is enabled internally.
	0	Comb is enabled by the internal signal COMB_EN.*
	1	Comb is enabled when VAV is active.

HSCL[14:0] The 15-bit register defines a horizontal scaling ratio of HSCL[14:0]/2¹⁵. Any change to this value will become effective during the next vertical sync.

	Vertical Scaling Ratio											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x1C	VSCLL			ACMBCO	ACMBRE							
0x1D	VSCLH		VSCL[13:6]									

ACMBRE	Active co	mb filter threshold select.
	0	High threshold.*
	1	Low threshold.
ACMBCO	Active co	mb filter coefficient set select.
	0	Use the set of coefficients for 100% comb.*
	1	Use the set of coefficients for 75% comb.
VSCL[13:0]		it register defines a vertical scaling ratio of VSCL[13:0]/2 ¹⁴ . Any change to this value me effective during the next vertical sync.

MULTIMEDIA VIDEO

KS0127B Data Sheet

	Output Control A											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x1E	OFMTA	GAMEN[1:0]		OENC[1:0]		OFMT[3:0]						

OFMT[3:0]	-	deo output format select. 16 and 24 bit data are output at CK2 clock rate. 8 bit data are t CK clock rate.
	0	16-bit YCbCr 4:2:2 output on the Y and C output ports.*
	1	12-bit YCbCr 4:1:1 output on the Y and C output ports.
	2	8-bit YCbCr 4:2:2 without embedded timing reference codes.
	3	8-bit YCbCr 4:2:2 with embedded timing reference codes.
	4	24-bit YCbCr 4:4:4.
	5	16-bit RGB 565.
	6	24-bit RGB 888 with linear bit ordering.
	7	24-bit RGB 888, bit ordering is an extension of the 16-bit RGB 565 format.
	8	Same as mode 2 with the additional of 8-bit YCbCr 4:2:2 data output on the EXV port. While the Y port can be scaled down, the EXV port will always be a full size picture.
	9	Same as 8 with the addition of SAV and EAV codes.
	A	output Y ADC data all the time (including syncs) on the Y port, C port is non-scaled 656 data with no timing codes.
	В	Output Y ADC data all the time (including syncs) on the Y port, Output C ADC data all the time (including syncs) on the C port,
OENC[1:0]		ther the OEN pin is low or the OUTHIZ is a "1", these two bits will determine which ins are three-stated.
	0	All video pins are three-stated.
	1	All video pins, plus HAV, VAV, EVAV, EHAV, PID, ODD, HS1, HS2, VS, and SCH are three-stated.
	2	All pins listed above, plus CK and CK2 are three-stated.
	3	Always output data.
GAMEN[1:0]	Gamma	correction enable.
	0	No gamma correction.*
	1	Gamma correction is applied to Y/G data.
	2	Gamma correction is applied to U/B and V/R data.
	•	

3 Gamma correction is applied to Y/G, U/B, and V/R data.

				Output C	Control B					
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0x1F	OFMTB	VSVAV	EVAN	D[1:0]	EVHS1	EVHAV	EVEHAV	EVAVG	EVANDL	
EVAVG	Gat	e EVAV witl	n VAV befo	re sending	to output.					
	0	EVA	V is not ga	ted with VA	V. EVAV m	ay be active	e outside of	active VAV	region.*	
	1	EVA	V is gated	with VAV. I	EVAV can b	e active on	ly when VA	/ is active.		
EVEHA	V Add	litional quali								
	0	No a	additional q	ualifier.*						
	1	EHA	V uses qu	alifier from I	EVAND[1:0].				
EVHAV	Add	litional quali	fier for HA\	/.						
	0	No a	additional q	ualifier.*						
	1	HA\	/ uses qual	ifier from E	VAND[1:0].					
EVHS1	Add	litional quali	fier for HS1							
	0	No a	additional q	ualifier.*						
	1	HS1	uses qual	fier from E	/AND[1:0].					
EVAND EVAND	L HS1	I			eo lines. Thi					
				ve for all lin	hree bits are	e grouped u	Syemer and	explained	Delow	
	1					ortical activ	o or blook u	ill be outpu	+	
	2			•	ne during ve			•		
	2				/ All lines og vertical ad	-	•	/Av==0) an	a an ines	
	3	Qua	lifier is VA	/ All lines	during vert	ical active v	vill be outpu	it.		
	4		lifier is EVA output.	V and VA	/ All lines	that EVAV	is active du	ring vertica	l active will	
	5		lifier is EVA V ADC line		d VBI_RAW	/_EN All I	ines as in o	ption 4 plus	the VBI	
	6	6 Qualifier is EVAV, VAV, VBI_RAW_EN and VBI_SLC_EN All lines as in option 5 plus the VBI Sliced Lines.								
	7	All \	/BI sliced a	nd VBI RA\	N Lines only	/.				
VSVAV	Ena	ble VAV to	be output t	o VS.						
	0	Out	out normal	VS.*						
	1	VSI	has the sar	ne output a	s VAV					

VBI Decoder Control												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x20	VBICTL	VBCVBS	VYFN	T[1:0]	VBINSRT	ODDEN	EVENEN	ODDC	DS[1:0]			
ODDOS	S[1:0] Line	e offset for C	DD field. S	ee also V	BIL [15:0].							
	0	ODE) field line o	offset is -1	compared to	EVEN field	d.*					
	1	No c	offset.									
	2	ODE) field line o	offset is 1 of	compared to	EVEN field						
	3	ODE	D field line o	offset is 2 of	compared to	EVEN field						
EVENE	N VBI	data proces	ssing for E	/EN field.								
	0	No p	processing.	*								
	1	VBI	processing	is enable	d for EVEN fi	eld.						
ODDEN	I VBI	data proces	ssing for OI	DD field.								
	0	No p	processing.	*								
	1	VBI	processing	is enable	d for ODD fie	ld.						
VBINSF	RT Ena	ble VBI data	a to be outp	out on the	Y bus.							
	0	VBI	data is not	output on	the Y bus.*							
	1	VBI	data is outp	out on the	Y bus.							
VYFMT	[1:0] Who	en VBINSR	F = 1, these	e bits cont	rol how VBI c	lata are out	put on the Y	′bus.				
	0	1 bit	on Y7 per	CK2 clock	*							
	1	1 bit	on Y7 plus	s a "1" on Y	3 per CK2 cl	ock.						
	2	4 bit	s on Y7Y4	4, with first	t bit on Y7, la	st bit on Y4	l, plus a "1" o	n Y3 per C	K2 clock.			
	3	8 bit	8 bits on Y7Y0, with first bit on Y7, last bit on Y0, per CK2 clock.									
VBCVB	VBI	•	ew VBIMIC		C to be outp s simultaneou							
	0	Outp	out sliced V	BI data fo	r any line wh	ose VBIL va	alue ~= 0.*					
	1	Outp	out digitized	I CVBS da	ita for any lin	e whose VI	3IL value ~=	0.				

	First Decoded Close-Caption Data Byte (Read Only)											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x21	CCDAT1	b0	b1	b2	b3	b4	b5	b6	P1			

CCDAT1 This byte contains the first byte of the decoded close-caption data as defined in EIA-608. In order for this register to receive the CC data, **VBINSRT** must be programmed to a "1", and **VYFMT[1:0]** must be programmed with the value 3. The same applies to **CCDAT2**. For normal NTSC Closed Caption decoding, **ODDEN** should be set to a "1", **VBIL12** should be programmed with the value 1.

	Second Decoded Close-Caption Data Byte (Read Only)											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x22	CCDAT2	b0	b1	b2	b3	b4	b5	b6	P2			

CCDAT2 This byte contains the second byte of the decoded close-caption data as defined in EIA-608.

VBI Data Decoding									
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x23	VBIL30	VBIL3		VBIL2		VBIL1		VBIL0	
0x24	VBIL74	VBIL7		VBIL6		VBIL5		VBIL4	
0x25	VBIL118	VBIL11		VBIL10		VBIL9		VBIL8	
0x26	VBIL1512	VBIL15		VBIL14		VBIL13		VBIL12	

- VBIL0..VBLI15 These 16 2-bit numbers select how the chip should decode the VBI data for each VBI line. For 60 Hz video, **VBIL1** through **VBIL15** correspond to lines 10 through 24 in the ODD field, and lines 273 through 286 in the EVEN filed for NTSC (refer to NTSC line numbering convention). For 50 Hz video, **VBIL1** corresponds to line 7 in the ODD field, and line 320 in the EVEN field. **VBIL0** is used for all other lines not covered by **VBIL1** through **VBIL15**.
 - 0 Decode normal video.*
 - 1 Decode Closed Caption data.
 - 2 Decode Teletext data.
 - 3 Decode WSS data.

MULTIMEDIA VIDEO

	Teletext Frame Alignment Pattern										
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										
0x27	0x27 TTFRAM TTFRAM[7:0]										

TTFRAM[7:0] User programmable Teletext frame alignment pattern.

	UV Offset Adjustment												
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0												
0x29	UVOFFH	TSTCLC	TSTCGN	0	TSTCFR	UOFFS	ST[5:4]	VOFF	ST[5:4]				
0x2A	UVOFFL		UOFF	ST[3:0]			VOFF	ST[3:0]					

VOFFST[5:0], UOFFST[5:0]		o 6-bit 2s compliment values are for offset adjustment to the U and V components of na data. The resolution is 1/4 LSB of the 8-bit U and V.
TSTCFR	Chroma f	frequency tracking control.
	0	Chroma frequency tracking is enabled.*
	1	Chroma frequency tracking is open loop.
TSTCGN	Chroma g	gain control.
	0	Chroma gain tracks input.*
	1	Chroma gain is controlled by SAT only.
TSTCLC	Cloche fi	lter bypass.
	0	Cloche filter is enabled for SECAM input.*
	1	DC bypass of the cloche filter.

MULTIMEDIA VIDEO

	U Component Gain Adjustment											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0											
0x2B	0x2B UGAIN UGAIN[7:0]											

UGAIN[7:0] U component gain adjustment. The nominal value is 0.

	V Component Gain Adjustment											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x2C	0x2C VGAIN VGAIN[7:0]											

VGAIN[7:0] V component gain adjustment. The nominal value is 0.

	VAV Begin										
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										
0x2D	0x2D VAVB VAVB[6:1] VAVOD0 VAVEV0										

VAVEV0	The LSB for VAVB and VAVE for the even field.
VAVOD0	The LSB for VAVB and VAVE for the odd field.
VAVB[6:1]	The 6 MSBs of a 7-bit unsigned number which defines the start of VAV. The value '0" corresponds to line 4.

	VAV End											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x2E	0x2E VAVE VAVE[8:1]											

VAVE[8:1] The 8 MSBs of a 9-bit unsigned number which defines the end of VAV. The value '0" corresponds to line 4.

Modified on May/04/2000

Chroma Tracking Control Register											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x2F	CTRACK	0	0	DMC	TL[1:0]	C[1:0]	CFTC[1:0]				
CFTC[1	:0] C	hroma freque	ency trackir	ng time con	stant.						
	0	Slov	ver.*								
	1	Slov	V.								
	2	Fas	t.								
	3	Fas	ter.								
CGTC[1	l:0] C	hroma gain t	racking tim	e constant.							
	0	Slov	ver.*								
	1	Slov	v.								
	2	Fas	t.								
	3	Fas	ter.								
DMCTL	[1:0] C	hroma demo	dulation by	pass mode							
	0	Chr	oma demo	dulation is e	enabled.*						
	1	Chr	oma demo	dulation is b	ypassed fo	r digital YCb	Cr input.				
	2				ypassed fo 2 clock peri	r analog YC od.	bCr input. (Cb path is p	hase		
	3				oypassed fo 2 clock peri	r analog YC od.	bCr input. (Cr path is p	hase		

	Timing Signal Polarity Control											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x30	0x30 POLCTL EVAVPL VSPL ODDPL HAVPL EHAVPL HS2PL VAVPL HS1PL											

HS1PL	HS1 pola	ırity.
	0	Active high.*
	1	Active low.
VAVPL	VAV pola	arity.
	0	Active high.*
	1	Active low.
HS2PL	HS2 pola	irity.
	0	Active high.*
	1	Active low.*
EHAVPL	EHAV po	plarity.
	0	Active high.*
	1	Active low.
HAVPL	HAV pola	arity.
	0	Active high.*
	1	Active low.
ODDPL	ODD pola	arity (this also affects the F bit in 656 code).
	0	Active high.*
	1	Active low.
VSPL	VS polari	ity (this also affect the V bit in 656 code).
	0	Active high.*
	1	Active low.
EVAVPL	EVAV po	larity.
	0	Active high.*
	1	Active low.

	Reference Code Insertion Control											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0											
0x31	REFCOD	YCRANG	0	0	0	0	0	0	0			

YCRANG

Digital video output range control.

- 0 Y and C ranges are limited to 1 254; R, G, and B ranges are limited to 1 254.*
- 1 Y range is limited to 16 235; C range is limited to 16 240; R, G, and B ranges are limited to 16 240.

Invalid Y Code										
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0									
0x32	INVALY INVALY[7:0]									

INVALY[7:0] User programmed code to be output for Y data when HAV is active but EHAV is inactive.

	Invalid U Code										
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x33	0x33 INVALU INVALU[7:0]										

INVALU[7:0] User programmed code to be output for U data when HAV is active but EHAV is inactive.

	Invalid V Code											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x34	0x34 INVALV INVALV[7:0]											

INVALV[7:0] User programmed code to be output for V data when HAV is active but EHAV is inactive.

MULTIMEDIA VIDEO

	Unused Y Code											
Index	Memonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0											
0x35	0x35 UNUSEY UNUSEY[7:0]											

UNUSEY[7:0] User programmed code to be output for Y data when HAV is inactive.

Unused U Code											
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										
0x36	0x36 UNUSEU UNUSEU[7:0]										

UNUSEU[7:0] User programmed code to be output for U data when HAV is inactive.

	Unused V Code										
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0										
0x37	0x37 UNUSEV UNUSEV[7:0]										

UNUSEV[7:0] User programmed code to be output for V data when HAV is inactive.

Extra Control Bits for the KS0127B Version												
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x38	EXCTRL	TRL 0	ENINCST	0	-	AUCPWD	0	0	CLEVEL			
CLEVE	EL Pr	ogrammable	e CKILL bur	st level sel	ect bit.							
	0	Bur	st peak leve	l is 11 IRE	.*							
	1	Bur	st peak leve	l is 5.5 IRE								
AUCP\	ND Au	to chroma	ADC power	down mode	e enabled v	when appropr	iate input	format is se	elected.			
	0	Chr	oma ADC p	owered do	wn only du	ring entire chi	ip power d	own mode	*			
	1	Chr	oma ADC is	power dov	wned wher	CVBS input	or case 0'o	condition.				
ENINC	ST Sc	aler enable	control bit d	luring VBI.								
	0	Sca	ler on during	g VBI inter	val (defined	d by VAV).*						
	1	Sca	ler off during	g VBI inter	val.							

Tracking Configuration Controls A											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0		
0x39	TRACKA	STCTRL	MAC_DET	VCR_DET	VCR_L	EV[1:0]	ATCTRAP	VBCTRAP	AGCLSB		
AGCLS	SB AG 1.	C LSB for	control of th	e 9 bit AGC	gain value	. This bit or	nly write to A	GC when A	AGCFRZ is		
	0	Wri	te 0'to AGC	9 bit contro	LSB if A	GCFRZ = 1	*				
	1	Wri	te 1'to AGC	9 bit contro	LSB if A	GCFRZ = 1					
VBCTF	RAP Ch	roma trap e	nabled duri	ing the VBI.							
	0	Chr	oma trap is	controlled b	by CTRAP	only.*					
	1	Chr	oma trap er	nabled durin	ig VBI.						
ATCTF	RAP Au	to Chroma	Trap on lum	na path whe	n VCR inpu	ut is detecte	ed.				
	0	Chr	oma trap is	controlled b	by CTRAP	only.*					
	1	lf V	CR type inp	ut is detecte	ed, then C1	RAP is ena	abled.				
VCR_L	EV Set	t the Fh var	iation from	nominal for	detection c	of VCR type	input.				
	0	50 I	PPM.*								
	1	100	PPM.								
	2	200	PPM.								
	3	400	PPM.								
VCR_E	DET Sta	atus bit. Det	ect input the	at is not SC	H locked s	uch as cons	sumer type \	/CR (Read	only).		
	0	SCI	H locked vic	leo.							
	1	Col	or burst not	locked to F	h (VCR).						
MAC_[DET Sta	atus bit. Ma	crovision Er	ncoded Data	a detected	as input vid	eo source (I	Read only).			
	0	Sta	ndard video	detected.							
	1	Mad	crovision Er	coded data	detected.						
STCTF	RL Sta	ate machine	transition of	control.							
	0	Nor	mal state m	achine tran	sitions.*						
	1	Ste	ady state sy	nc level ren	noved as c	ondition for	lock.				

	VBI Control Register B										
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0										
0x3A	VBICTLB	VBISWAP	TT_SYS[1:0]		VBIMID	NEW_CC	CC_OVFL	YOFFENB	COFFENB		

COFFENB	Disable c	ontrol for the C-path clamp control.
	0	C-path clamp works as normal.*
	1	C-path clamp disabled.
YOFFENB	Disable c	ontrol for the Y-path clamp control.*
	0	Y-path clamp works as normal.*
	1	Y-path clamp disabled.
CC_OVFL	Defines w (Read Or	when the current CCDAT1,2 data has over written previous data that was not read.
	0	Current data has not generated an overflow condition.
	1	Current data as written over data that was not read.
NEW_CC	Defines w Only)	when new Closed Caption data is ready for reading from the CCDAT1,2 bytes. (Read
	0	Current data in CCDAT1,2 has already been read.
	1	Current data in CCDAT1,2 is new.
VBIMID	Changes	function of WSS enable (per line bases during VBI) to a raw CVBS enable.
	0	When VBIL (0-15) = 3, current line is enabled for WSS slicing.*
	1	When VBIL (0-15) = 3, current line is enabled for raw ADC output.
TT_SYS	Select Te	letext input system when auto detect is not possible.
	0	Auto Teletext Select.*
	1	Teletext System B.
	2	Teletext System C.
	3	Teletext System D.
VBISWAP	Reverse	the bit order for data output from the closed caption or Teletext slicer.
	0	Same as KS0127 First bit sliced is located in MSB position.*
	1	First bit sliced (in time) is located in LSB position.

Tracking Configuration Controls B Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0												
Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0				
TRACKB	ALT656	VBI_PH	VBI_FR	PH_CTRL	VNOISCT	AGC_L	PG[1:0]	AGC_LKG				
LKG AG	GC gain trac	king loop tir	ne constan	t for initial tr	acking mod	e.						
0	Sam	ne as stead	y state time	e constant.*								
1	2X f	aster than s	selected ste	eady state ti	me constan	t.						
_PG AG	GC gain stea	dy state tra	cking loop	time consta	nt.							
0	Fast	test.*										
1	Fast	t.										
2	Slov	v.										
3	Slov	vest.										
CT Ve	rtical sync n	oise contro	l enable.									
0	Vert	ical sync ac	djusts with	all sync pha	se changes	.*						
1	Vert	ical sync la	rge phase	errors must	occur for 4	lines to act	ivate a pha	ise change.				
TRL Co	ontrols phase	e detector r	esponse.									
0	Syn	cs after the	'0" point ret	ference hav	e priority.*							
1	Syn	cs prior to 't	D"point refe	erence have	priority.							
R Dis	sables frequ	ency comp	ensation fo	r VCR head	switch lines	s only.						
0	Free	quency trac	king indepe	endent of thi	s control.*							
1	Free	quency trac	king disable	ed for VCR	nead switch	lines.						
H En	ables phase	e compensa	tion for VC	R head swit	ch lines onl	у.						
0	Pha	se tracking	independe	nt of this co	ntrol.*							
1	Pha	se tracking	enabled fo	r VCR head	switch lines	s only.						
6 Alt	ernate 656	Vertical blai	nk location	for 50 Hz vi	deo.							
0	Vert	ical blank s	ize per the	ITU 656 Sp	ecification (ends at 65	6 digital lin	e 23).*				
1	Vert	ical blank s	ize same a	s 60 Hz (en	ds at 656 di	gital line (5	50 Hz) 6).					
	TRACKB -KG 0 1 0 -PG AG 0 1 2 0 3 0 3 0 5CT Ve 0 1 7RL Co 1 1 R Dis 0 1 H En 0 1 6 Alt 0 1	TRACKBALT656LKGAGC gain tract 00Sam 112X f 1LPGAGC gain stea 00Fasi 21Fasi 22Slow 33Slow 36AGC gain stea 00Fasi 11Fasi 22Slow 33Slow 33Slow 33Slow 3CCTVertical sync m 10Vertical sync 11Sync 11Sync 11Sync 11Sync 11Free 11Free 11Pha 16Alternate 656 00Vert	Mnemonicbit 7bit 6TRACKBALT656VBI_PHLKGAGC gain tracking loop tir 0Same as steady 112X faster than s12X faster than sLPGAGC gain steady state tra 00Fastest.*1Fast.2Slow.3Slowest.CTVertical sync noise contro 00Vertical sync la 1CTVertical sync la 1TRLControls phase detector re 00Syncs after the 11Syncs prior to "C 0RDisables frequency compo 00Frequency trac 1HEnables phase compensa 00Phase tracking 11Phase tracking 01Phase tracking 10Vertical blank s	Mnemonicbit 7bit 6bit 5TRACKBALT656VBI_PHVBI_FRLKGAGC gain tracking loop time constant 0Same as steady state time 12X faster than selected steady 12X faster than selected steady 1LPGAGC gain steady state tracking loop 0Fastest.*1Fast.2Slow.3Slowest.SCTVertical sync noise control enable. 00Vertical sync adjusts with a 11Vertical sync adjusts with a 11Vertical sync large phase of 0FRLControls phase detector response. 00Syncs after the '0" point refer 11Syncs prior to '0" point refer 1RDisables frequency compensation fo 00Frequency tracking independe 11Phase tracking enabled fo 06Alternate 656 Vertical blank location 00Vertical blank size per the	Mnemonic bit 7 bit 6 bit 5 bit 4 TRACKB ALT656 VBI_PH VBI_FR PH_CTRL LKG AGC gain tracking loop time constant for initial tr 0 Same as steady state time constant.* 1 2X faster than selected steady state time 0 Fastest.* 1 Fast. 2 2 Slow. 3 3 Slowest. SCT Vertical sync noise control enable. 0 Vertical sync adjusts with all sync pha 1 1 Vertical sync large phase errors must IRL Controls phase detector response. 0 Syncs after the '0" point reference have 1 Syncs prior to '0" point reference have 1 Frequency tracking independent of thi 1 Frequency tracking independent of thi 1 Frequency tracking independent of this con 1 Phase tracking enabled for VCR head swite 0 Vertical blank location for 50 Hz vite	Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 TRACKB ALT656 VBI_PH VBI_FR PH_CTRL VNOISCT LKG AGC gain tracking loop time constant for initial tracking mod 0 Same as steady state time constant.* 1 2X faster than selected steady state time constant. 1 2X faster than selected steady state time constant. 0 Fastest.* 1 Fast. 2 Slow. 3 2 Slow. 3 Slowest. SCT Certical sync noise control enable. 0 Vertical sync large phase errors must occur for 4 TRL Controls phase detector response. 0 Syncs after the '0" point reference have priority.* 1 Syncs prior to '0" point reference have priority. 1 Syncs prior to '0" point reference have priority. R Disables frequency compensation for VCR head switch lines on 0 Frequency tracking independent of this control.* 1 Frequency tracking independent of this control.* 1 Phase tracking enabled for VCR head switch lines on 0 Phase tracking enabled for VCR head switch lines on 0 Phase	Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 TRACKB ALT656 VBI_PH VBI_FR PH_CTRL VNOISCT AGC_L LKG AGC gain tracking loop time constant for initial tracking mode. 0 Same as steady state time constant.* 1 2X faster than selected steady state time constant. LFG AGC gain steady state tracking loop time constant. 0 Fastest.* 1 Fastest.* 1 Fastest.* 1 Fast. 2 Slow. 3 Slowest. SCT Vertical sync noise control enable. 0 Vertical sync adjusts with all sync phase changes.* 1 Vertical sync large phase errors must occur for 4 lines to act TRL Controls phase detector response. 0 Syncs after the '0" point reference have priority.* 1 Syncs prior to '0" point reference have priority. R Disables frequency compensation for VCR head switch lines only. 0 Frequency tracking independent of this control.* 1 Frequency tracking independent of this control.* 1 Phase tracking enabled for VCR head switch lines only. 0 0	Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 TRACKB ALT656 VBI_PH VBI_FR PH_CTRL VNOISCT AGC_LPG[1:0] LKG AGC gain tracking loop time constant for initial tracking mode. 0 Same as steady state time constant.* 1 2X faster than selected steady state time constant. 1 2X faster than selected steady state time constant. 0 Fastest.* 1 Fast. 2 Slow. 3 Slowest. Slowest. SCT Vertical sync noise control enable. 0 Vertical sync adjusts with all sync phase changes.* 1 Vertical sync large phase errors must occur for 4 lines to activate a phase Silowest. CT Vertical sync large phase errors must occur for 4 lines to activate a phase Silowest. CT Vertical sync roise control enable. 0 Syncs after the '0" point reference have priority.* 1 Syncs after the '0" point reference have priority.* 1 Syncs prior to '0" point reference have priority. R Disables frequency compensation for VCR head switch lines only. 0 Frequency tracking inde				

RTC Genlock output signal control											
Index	IndexMnemonicbit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0										
0x3C	RTC	RTC_DTO	RTC_PID	0	TDMOD	0	0	0	0		

TDMOD	Test bit for chroma demodulation mode.
	0 Normal operation.*
	1 Test mode.
RTC_PID	Polarity control for PAL ID transferred within the RTC data stream.
	0 Same polarity as default PID pin.*
	1 Inverted polarity.
RTC_DTO	Enables a DTO reset inside the KS0127B and sends a DTO reset within the RTC data stream. Function is activated on the rising edge of RTC_DTO.
	0 Function disabled.*
	1 Function enabled one time when set to 1.

MULTIMEDIA VIDEO

KS0127B Data Sheet

	Command Register E									
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
0x3D	CMDE	ODFST	VSALG	LG HCORE[1:0] CHIPREVID						
CHIPR		our additiona		terminatior	of current F	Revision and	d differentia	ation from th	ie KS0127.	
	0	KS)127.							
	9	KS	127B Revis	sion A.*						
HCOR	E L	uma path ho	rizontal cori	ng. Noise li	imiter for hig	h frequency	y portion of	luma.		
	0	Cor	ing function	is disabled	1.*					
	1	1 bi	t of coring.							
	2	2 bi	ts of coring.							
	3		ts of coring.							
VSALG	a v	ertical scalin	•		ım.					
	0	Ver	• • • •		same lines i	n the Odd a	and Even fie	elds good	for fast	
	1		-	•	s based on t e sensitive to			video. This i	s a better	
ODFS	Г А	Iternate the f	irst scaling	line betwee	en Odd and	Even fields.				
	0	Eve	n field is the	e first scale	d field.*					

1 Odd field is the first scaled field.

	VS Delay Control									
Index	Index Mnemonic bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0									
0x3E	0x3E VSDEL TR_MS NOVIDC VSDEL[5:0]									

VSDEL[5:0]	When the chip is programmed for digital video input operation, this register provides an offset for the internal line counter to align with input video (VS can be either from the VS pin or from embedded timing code). The register content is unsigned.
NOVIDC	Allows NOVID bit to be output to PORTB (pin 24).
	0 Normal operation.*
	1 The NOVID bit is output to PORTB if DATAB[2:0] =1 and DIRB =1.
TR_MS	Enable alternative initial tracking mode state machine.
	0 Normal operation - Horizontal tracking mode is controlled by the HFSEL[1:0] bits.*
	1 Variable tracking modes during locking time.

				Command	Register F				
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0x3F	CMDF	CTRAPFSC	VIPMODE	EVAVY	UVDLEN	UVDLSL	REGUD	TASKB	CBWI
CBWI	0	hroma band	width increa mal chroma			d be used f	or digital vic	ieo input mo	ode only.
	1		eased chroi						
TASKE		elect betwee				2 Specificat	tion V 10"		
T/ CITE	, e				odes (T-bit is	-			
	1	Sele	ect between	task A and	B when VB ata is outpu	l data is ou	tput. If activ		utput, T-bit
REGU	D C	ontrol registe	er update co	ontrol.					
	0	Reg	jisters are u	pdated imn	nediately aft	er being wr	itten to.*		
	1	syn Inde	c after they	are written	d register bit to: hrough 0x1[-	
UVDLS	SL U	or V delay c	ontrol when	UVDLEN	is set to 1.				
	0	V is	delayed by	1 CK perio	od.*				
	1	U is	delayed by	1 CK perio	od.				
UVDLE	EN E	nable the fur	ction of UV	DLSL.					
	0	UVI	DLSL is disa	abled.*					
	1	UVI	DLSL is ena	abled.					
EVAVY	r c	ontrol the ou	tput of INV	ALY, INVAL	U, and INV	ALV codes	when EVAV	is inactive.	
	0				not affected	•			
	1	The scal		e output wi	nen EVAV is	inactive (li	ne is being o	dropped by	the vertical
VIPMC		llows transfe orizontal blar			3l data as ai	ncillary data	a during the	following lir	nes
	0	Star	ndard KS01	27 original	sliced VBI d	lata transfe	r.*		
	1	Opt	ional ancilla	ry sliced V	BI data trans	sfer.			
CTRAF	PFSC E	nable chrom	a trap locati	on based o	on Fsc freque	ency instea	d of field rat	e.	
	0	Chr	oma trap ba	sed on fiel	d rate (same	e as KS012	7).*		
	1	Chr	oma trap ba	ised on det	ected Fsc fr	equency.			

	Gamma Base											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x40	GAMMA0		GAMMA0[7:0]									
0x41	GAMMA1		GAMMA1[7:0]									
:	:					:						
:	:		:									
0x5F	GAMMA31				GAMM	A31[7:0]						

GAMMA0 Gamma correction base. The desired output for 8*N, where N = 0, ..., 31, is programmed into GAMMA31 GAMMAN. Note that data written into these addresses are simultaneously written into addresses 0xC0 through 0xDF.

	Gamma Correction Delta											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0x60	GAMMAD0	-	-	GAMMAD0[5:0]								
0x61	GAMMAD1	-	-	GAMMAD1[5:0]								
:	:	:	:			:						
:	:	:	:		:							
0x7F	GAMMAD31	-	-			GAMMA	D31[5:0]					

GAMMAD0 ..GAMMAD31 The Nth location of the 32 locations is programmed with a 6-bit unsigned number which represents the gamma correction delta for the gamma bases N and N + 1. The last location will contain the gamma correction delta for gamma base 31 and presumed base 32 which has the value of 256. Note that data written into these addresses are simultaneously written into addresses 0xE0 through 0xFF.

	U/V Gamma Base											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0xC0	GAMUV0		GAMUV0[7:0]									
0xC1	GAMUV1		GAMUV1[7:0]									
:	:					:						
:	:		:									
0xDF	GAMUV31				GAMU	/31[7:0]						

GAMUV0 U and V gamma correction base. The desired output for 8*N, where N = 0, .., 31, is programmed into **GAMUV**N.

	U/V Gamma Correction Delta											
Index	Mnemonic	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0			
0xE0	GAMUVD0	-	-		GAMUVD0[5:0]							
0xE1	GAMUVD1	-	-		GAMUVD1[5:0]							
:	:	:	:				:					
:	:	:	:		:							
0xFF	GAMUVD31	-	-			GAMUV	D31[5:0]					

GAMUVD0 U and V gamma correction delta. The Nth location of the 32 locations is programmed with a 6-bit unsigned number which represents the gamma correction delta for the gamma bases N and N + 1. The last location will contain the gamma correction delta for gamma base 31 and presumed base 32 which has the value of 256.

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Units
5-V supply voltage (measured to VSS)	V _{DD}	-0.5 to + 7.0	V
3.3-V supply voltage (measured to VSS)	V _{DD3}	-0.5 to + 4.5	V
Voltage on any digital pin	V _{PIN}	-0.5 to (V _{DD} +0.5)	V
Ambient operating temperature (case)	T _A	-35 to + 100	C°
Storage temperature	T _S	-65 to + 150	C°
Junction temperature	TJ	150	C°
Vapor phase soldering (1 min.)	Tvsol	220	C°

Notes: 1.Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions.

2. Functional operation under any of these conditions is not implied.

3.Applied voltage must be current limited to a specified range.

OPERATING CONDITIONS

Characteristics	Symbol	Min	Тур	Max	Units
5-V supply voltage (measured to VSS)	V _{DD5}	4.75	5.0	5.25	V
3.3-V supply voltage (measured to VSS)	V _{DD3}	3.0	3.3	3.6	V
Ambient operating temperature, still air	T _A	-20		70	C°

MULTIMEDIA VIDEO

ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Units
Supply			- L L		
+5V (VDD, VDDA, VDDA1), normal operation	I _{DD5}		150		mA
+3.3V (VDD3), normal operation	I _{DD3}		141		mA
+5V (VDD, VDDA, VDDA1), power down mode	I _{DD5}		90		mA
+3.3V (VDD3), power down mode	I _{DD3}		5		mA
Analog Characteristics	1				
Integral linearity error (AGC/ADC only)	E _{I-ADC}		1.0	3.0	lsb
Differential linearity error (AGC/ADC only)	E _{D-ADC}		0.5	1.5	lsb
Total harmonic distortion (4 MHz full scale)	THD		54		dB
Signal to noise ratio (4 MHz full scale)	SNR		42		dB
Analog bandwidth (50 IRE to 3 dB point)	BW	4			MHz
Input voltage range (peak-peak) 100 IRE input	V _{I(PP)}	0.5		1.5	V _{pp}
Input resistance AY0-AY2,AC0-AC2	R _{IN}	200			kΩ
Input capacitance for analog video inputs	C _{IN}		10		pF
Charge current for offset control	I _{OFF}		±4		μΑ
Cross talk between analog inputs	а		-42	-50	dB
/ideo Performance	1		1 1		
Luminance frequency response (maximum variation to 4.2 MHz - multi burst)	F _{LUMA}		1.5		dB
Differential gain - complete chip (Modulated 40 IRE ramp)	D _G		1.5		%
Differential phase - complete chip (Modulated 40 IRE ramp)	D _P		1.0		degree
Chrominance frequency response (3 dB point) - CBWR=0/1	F _{CHROMA}		800/500		kHz
Chroma nonlinear gain distortion (NTC-7 Combination)	C _{NGD}		1		%
Chroma nonlinear phase distortion (NTC-7 Combination)	C _{NPD}		1.25		degree
Chroma to luma intermodulation (NTC-7 Combination)	C _{LI}		1		IRE
Chroma luma gain equality (NTC-7 Composite)	DEL _{CL}		±20		ns
Chroma luma delay equality (NTC-7 Composite)	AMP _{CL}		98-101		%
Noise level for unified weighting 10 kHz-5 MHz (100 IRE unmodulated ramp)	N _{LUMA}		-58		dB
Chroma AM noise (red field)	N _{CAM}		-60		dB
Chroma PM noise (red field)	N _{CPM}		-54		dB

MULTIMEDIA VIDEO

Characteristics	Symbol	Min	Тур	Max	Units
Digital I/O Characteristics					
Input low voltage (other digital I/O)	V _{IL}	VSS-0.5		0.8	V
Input high voltage (other digital I/O)	V _{IH}	2.0		VDD+0.5	V
Input low voltage (SCLK,SDAT,RST)	V _{ILI2C}	VSS-0.5		0.3VDD	V
Input high voltage (SCLK,SDAT,RST)	V _{IHI2C}	0.7VDD		VDD+0.5	V
Input low current (V _{IN} = 0.4 V)	IIL			-1	μΑ
Input high current(VIN=2.4)	I _{IH}			-1	μΑ
Digital output low voltage (I _{OL} =3.2mA)	V _{OL}			0.4	V
Digital output high voltage (IOH=400µA)	V _{OH}	2.4			V
Digital three-state current	I _{OZ}			50	μΑ
Digital output capacitance	C _{OUT}			7	pF
Maximum capacitance load for digital data pins	C _{L-DATA}			30	pF
Maximum capacitance load for CK and CK2 outputs	C _{L-CK}			60	pF
Timing Characteristics - Digital Inputs	1 1				
XTALI input pulse width low	t _{pwIX}	15	20		ns
XTALI input pulse width high	t _{pwhX}	15	20		ns
Clock and Data Timing	<u>, </u>				
Analog video input to digital video output delay	t _{dCHIP}		120		CK
Pulse width high for CK (KS0112 operates at frequencies from 24.5 MHz to 29 MHz)	t _{pwhCK}	15	18.5	22	ns
Pulse width high for CK2	t _{pwhCK2}	30	37	44	ns
Delay from rising edge of CK to CK2	t _{CK2}		4		ns
Delay from rising edge CK to data change (including pins Y0-Y7, C0-C7, HAV, VAV, EHAV, EVAV, HS1, HS2, VS, ODD, PID, SCH)	t _{dD} (CK is output)		16	23	ns
	t _{dD} (CK is input)		14	21	ns
Minimum hold time from rising edge of CK for data output)	t _{hD}	7			ns
Delay from falling edge of OEN to data bits in 3-state	t _{zD}			20	ns
Delay from rising edge OEN to data bits enabled	t _{enD}			18	ns
Timing Characteristics -IIC Host Interface				<u> </u>	
SCLK clock frequency	r _{SCLK}	0		400	kHz
Capacitive load for each bus line	C _b			400	pF
Hold time for START condition	t _{hSTA}	0.6			μs
Setup time for STOP condition	t _{sSTO}	0.6			μs
Rise and fall times for SCLK and SDAT	t _R , t _F	20		300	ns

MULTIMEDIA VIDEO

Characteristics	Symbol	Min	Тур	Мах	Units
SCLK minimum pulse width low	t _{pwlSCLK}	1.3			μs
SCLK minimum pulse width high	t _{pwhSCLK}	0.6			μs
SDAT setup time to rising edge of SCLK	t _{SSDAT}	100			ns
SDAT hold time from rising edge of SCLK	t _{hSDAT}	0			ns

Note: AC/DC characteristics provided are per design specifications.

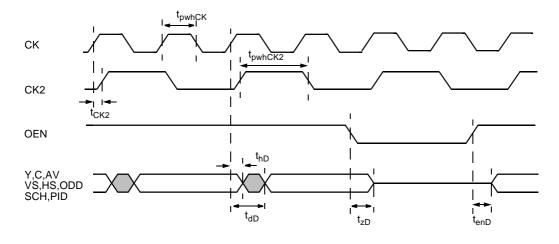


Figure 41. Data Output

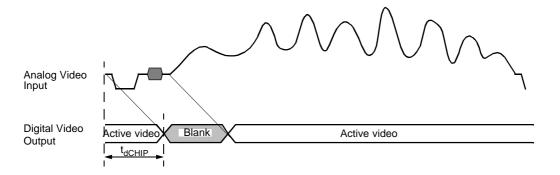


Figure 42. Analog Video Input to Digital Video Output Delay

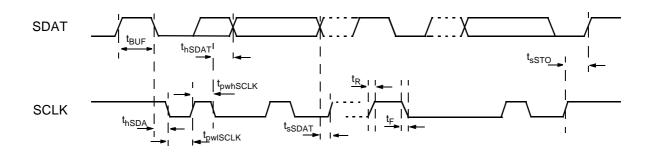
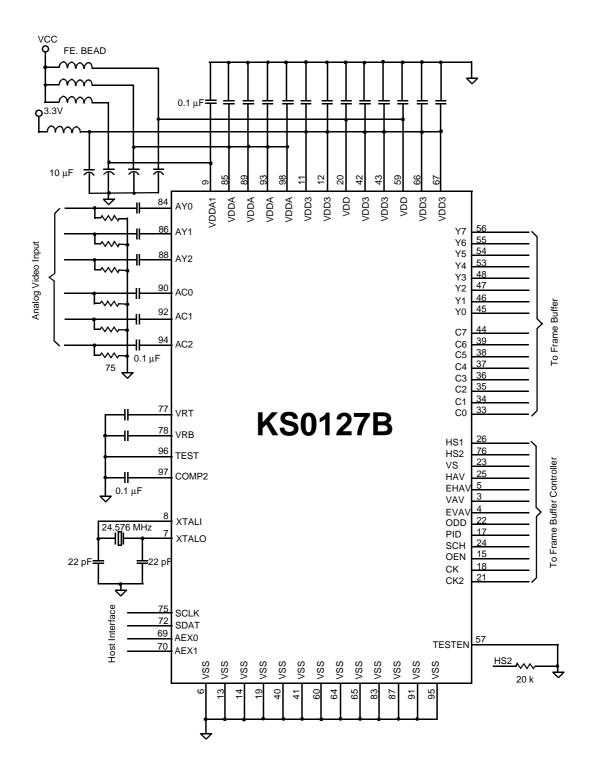
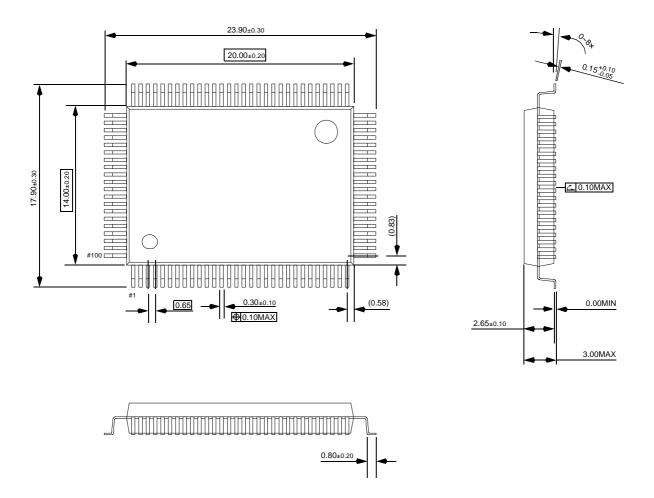



Figure 43. IIC Host Interface Detailed Timing

Modified on May/04/2000



Modified on May/04/2000

Package Dimension

100-QFP-1420D

Dimensions are in Millimeters

SAMSUNG SEMICONDUCTOR WORLDWIDE OFFICES

HEAD OFFICE

8/11FL., SAMUNG MAIN BLDG. 250, 2-KA, TAEPYUNG-RO, CHUNG-KU, SEOUL, KOREA TEL: 2-727-7114 FAX: 2-753-0967

SEMICONDUCTOR BUSINESS SALES & MARKETING DIVISION

15/16FL., SEVERANCE BLDG. 84-11, 5-KA, NAMDAEMOON-RO CHUNG-KU, SEOUL, KOREA TEL: 2-259-1114 FAX: 2-259-2468

SAMSUNG SEMICONDUCTOR INC.

3655 NORTH FIRST STREET SAN JOSE, CA 95134, U.S.A. TEL: 408-954-7000 FAX: 408-954-7873

SAMSUNG SEMICONDUCTOR EUROPE GMBH

SAMSUNG HOUSE AM KRONBERGER HANG 6 65824, SCHWALBACH/TS TEL: 49-6196-663300 FAX: 49-6196-663311

SAMSUNG SEMICONDUCTOR EUROPE LTD.

GREAT WEST HOUSE

GREAT WEST ROAD, BRENTFORD MIDDLESEX TW8 9DQ TEL: 181-380-7132 FAX: 181-380-7220

SAMSUNG ELECTRONICS JAPAN CO., LTD.

HAMACHO CENTER BLDG. 31-1, NIHONBASHI-HAMACHO, 2-CHOME CHUO-KU, TOKYO 103, JAPAN TEL: 3-5641-9850 FAX: 3-5641-9851

SAMSUNG ELECTRONICS HONG KONG CO., LTD.

65TH FL., CENTRAL PLAZA 18 HARBOUR ROAD WANCHAI, HONG KONG TEL: 852-2862-6900 FAX: 852-2866-1343

SAMSUNG ELECTRONICS TAIWAN CO., LTD.

30FL., NO.333 KEELUNG RD. SEC 1, TAIPEI, TAIWAN, R.O.C TEL: 886-2-757-9292 FAX: 886-2-757-7311

SAMSUNG ASIA PRT., LTD.

80 ROBINSON RD., #20-01 SINGAPORE 068898 TEL: 65-535-2808 FAX: 65-227-2792

SAMSUNG ELECTRONICS CO., LTD. SHANGHAI OFFICE

9F, SHANGHAI INTERNATIONAL TRADE CENTRE NO.2200 YANAN(W) RD. SHANGHAI, P.R.C. 200335 TEL: 8621-6270-4168 FAX: 8621-6275-2975

SAMSUNG ELECTRONICS CO., LTD. SEMICONDUCTOR BUSINESS BEIJING OFFICE

15FL., BRIGHT CHINA CHANG AN BLDG., NO.7, JIANGUOMEN, NEI AVENUE BEIJING, CHINA 100005 TEL: 8610-6510-1234(0)

Circuit diagrams utilizing SAMSUNG and/or SAMSUNG ELECTRONICS products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described herein any license under the patent rights of SAMSUNG and/or SAMSUNG ELECTRONICS, or others. SAMSUNG and/or SAMSUNG ELECTRONICS, reserve the right to change device specifications.

LIFE SUPPORT APPLICATIONS

SAMSUNG and/or SAMSUNG ELECTRONICS products are not designed for use in life support applications, devices, or systems where malfunction of a SAMSUNG product can reasonably be expected to result in a personal injury. SAMSUNG and/or SAMSUNG ELECTRONICS'customers using or selling SAMSUNG and/or SAMSUNG ELECTRONICS products for use in such applications do so at their own risk and agree to fully indemnify SAMSUNG and/or SAMSUNG ELECTRONICS for any damages resulting from such improper use or sale.

